Câu hỏi:
13/07/2024 1,208Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB. Chứng minh tứ giác MNPQ là hình vuông.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do ABCD là hình vuông nên AB = BC = CD = DA
Mà AM = BN = CP = DQ \( \Rightarrow \) AB – AM = BC – BN = CD – CP = DA – DQ
Hay MB = NC = PD = QA
Xét ∆AMQ và ∆BNM có: \(\widehat {MAQ} = \widehat {NBM} = 90^\circ \); AM = BN (gt); QA = MB (CMT)
Do đó ∆AMQ = ∆BNM (2 cạnh tương ứng)
Chứng minh tương tự ta có: MN = NP và NP = PQ
Khi đó MN = NP = PQ = QM
Tứ giác MNQP có 4 cạnh bằng nhau nên là hình thoi
Do ∆AMQ = ∆BNM (CMT) nên \(\widehat {AMQ} = \widehat {BNM}\) (2 góc tương ứng)
Mà \(\widehat {BNM} + \widehat {BMN} = 90^\circ \)(do ∆BMN vuông tại B) \( \Rightarrow \widehat {AMQ} + \widehat {BMN} = 90^\circ \)
Lại có \(\widehat {AMQ} + \widehat {QMN} + \widehat {BMN} = 180^\circ \Rightarrow \widehat {QMN} = 180^\circ - \left( {\widehat {AMQ} + \widehat {BMN}} \right) = 180^\circ - 90^\circ = 90^\circ \)
Hình thoi MNPQ có \(\widehat {QMN} = 90^\circ \) nên MNPQ là hình vuông.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình chóp S.ABCD có AD không song song với BC, lấy I ∈ SA so cho SA = 3IA, lấy J ∈ SC; M là trung điểm SB.
a. Tìm giao tuyến của (SAD) và (SBC).
b. Tìm giao điểm E của AB và (IJM).
c. Tìm giao điểm F của BC và (IJM).
d. Tìm giao điểm N của SD và (IJM).
e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.
Câu 3:
Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE ⊥ AB, nối E với trung điểm M của AD, từ M kẻ MF ⊥ CE, MF ∩ BC = N.
a. Hỏi MNCD là hình gì?
b. ∆EMC là tam giác gì?
c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)
Câu 4:
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.
Câu 5:
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.
a. Chứng minh: OD ⊥ AB và từ đó suy ra D là trung điểm của AB.
b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).
c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.
Câu 6:
Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.
b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.
về câu hỏi!