Câu hỏi:

13/07/2024 1,579

Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB. Chứng minh tứ giác MNPQ là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm  (ảnh 1)

Do ABCD là hình vuông nên AB = BC = CD = DA

Mà AM = BN = CP = DQ \( \Rightarrow \) AB – AM = BC – BN = CD – CP = DA – DQ

Hay MB = NC = PD = QA

Xét ∆AMQ và ∆BNM có: \(\widehat {MAQ} = \widehat {NBM} = 90^\circ \); AM = BN (gt); QA = MB (CMT)

Do đó ∆AMQ = ∆BNM (2 cạnh tương ứng)

Chứng minh tương tự ta có: MN = NP và NP = PQ

Khi đó MN = NP = PQ = QM

Tứ giác MNQP có 4 cạnh bằng nhau nên là hình thoi

Do ∆AMQ = ∆BNM (CMT) nên \(\widehat {AMQ} = \widehat {BNM}\) (2 góc tương ứng)

\(\widehat {BNM} + \widehat {BMN} = 90^\circ \)(do ∆BMN vuông tại B) \( \Rightarrow \widehat {AMQ} + \widehat {BMN} = 90^\circ \)

Lại có \(\widehat {AMQ} + \widehat {QMN} + \widehat {BMN} = 180^\circ \Rightarrow \widehat {QMN} = 180^\circ - \left( {\widehat {AMQ} + \widehat {BMN}} \right) = 180^\circ - 90^\circ = 90^\circ \)

Hình thoi MNPQ có \(\widehat {QMN} = 90^\circ \) nên MNPQ là hình vuông.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .

Lời giải

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE vuông góc AB, nối E với trung  (ảnh 1)

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC) 

MNCD là hình bình hành (1) 

MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2) 

Từ (1) và (2) MNCD là hình thoi. 

b. Do MN // AB // CD (câu a) và M là trung điểm AD 

F là trung điểm EC MF là đường trung tuyến của ∆MEC  với lại MF là đường cao của ∆MEC (MF EC)  ∆MEC cân tại M 

c. ∆MEC cân tại M và MF là đường cao của ∆MEC 

MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\) 

\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác

Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay