Câu hỏi:

19/08/2025 1,762 Lưu

Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB. Chứng minh tứ giác MNPQ là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm  (ảnh 1)

Do ABCD là hình vuông nên AB = BC = CD = DA

Mà AM = BN = CP = DQ \( \Rightarrow \) AB – AM = BC – BN = CD – CP = DA – DQ

Hay MB = NC = PD = QA

Xét ∆AMQ và ∆BNM có: \(\widehat {MAQ} = \widehat {NBM} = 90^\circ \); AM = BN (gt); QA = MB (CMT)

Do đó ∆AMQ = ∆BNM (2 cạnh tương ứng)

Chứng minh tương tự ta có: MN = NP và NP = PQ

Khi đó MN = NP = PQ = QM

Tứ giác MNQP có 4 cạnh bằng nhau nên là hình thoi

Do ∆AMQ = ∆BNM (CMT) nên \(\widehat {AMQ} = \widehat {BNM}\) (2 góc tương ứng)

\(\widehat {BNM} + \widehat {BMN} = 90^\circ \)(do ∆BMN vuông tại B) \( \Rightarrow \widehat {AMQ} + \widehat {BMN} = 90^\circ \)

Lại có \(\widehat {AMQ} + \widehat {QMN} + \widehat {BMN} = 180^\circ \Rightarrow \widehat {QMN} = 180^\circ - \left( {\widehat {AMQ} + \widehat {BMN}} \right) = 180^\circ - 90^\circ = 90^\circ \)

Hình thoi MNPQ có \(\widehat {QMN} = 90^\circ \) nên MNPQ là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có AD không song song với BC, lấy I thuộc SA so cho SA (ảnh 1)

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)

b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)

c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)

d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)

e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)

Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)

\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\) H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).

Lời giải

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE vuông góc AB, nối E với trung  (ảnh 1)

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC) 

MNCD là hình bình hành (1) 

MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2) 

Từ (1) và (2) MNCD là hình thoi. 

b. Do MN // AB // CD (câu a) và M là trung điểm AD 

F là trung điểm EC MF là đường trung tuyến của ∆MEC  với lại MF là đường cao của ∆MEC (MF EC)  ∆MEC cân tại M 

c. ∆MEC cân tại M và MF là đường cao của ∆MEC 

MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\) 

\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác

Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP