Cho hình chữ nhật ABCD có AB = a = 12 cm, BC = b = 9 cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a. Chứng minh ΔAHB ΔBCD.
b. Tính độ dài đoạn thẳng AH.
c. Tính diện tích ∆AHB.
Cho hình chữ nhật ABCD có AB = a = 12 cm, BC = b = 9 cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a. Chứng minh ΔAHB ΔBCD.
b. Tính độ dài đoạn thẳng AH.
c. Tính diện tích ∆AHB.
Quảng cáo
Trả lời:


a. Xét ΔAHB và ΔBCD, ta có: \(\widehat {AHB} = \widehat {BCD} = 90^\circ \)
AB // CD (gt) nên \(\widehat {ABH} = \widehat {BDC}\) (so le trong)
Vậy ΔAHB ΔBCD (g.g)
b. Vì ΔAHB ΔBCD nên: \(\frac{{AH}}{{BC}} = \frac{{AB}}{{BD}} \Rightarrow AH = \frac{{AB.BC}}{{BD}}\)
Áp dụng định lí Pi–ta–go vào tam giác vuông BCD, ta có:
BD2 = BC2 + CD2 = BC2 + AB2 = 122 + 92 = 225 ⇒ BD = 15 cm
Vậy AH = \(\frac{{12.9}}{{15}}\)= 7,2cm.
c. Ta có diện tích tam giác BCD là SBCD = \(\frac{1}{2}BC.CD = \frac{1}{2}.9.12 = 54\) (cm2).
Vì ∆AHB ∆BCD với tỉ số đồng dạng \(k = \frac{{AH}}{{BC}} = \frac{{7,2}}{9} = 0,8\) nên \(\frac{{{S_{AHB}}}}{{{S_{BCD}}}} = {k^2} = 0,{8^2} = 0,64\)
Suy ra SAHB = 0,64SBCD = 0,64 . 54 = 34,56 (cm2).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)
b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)
c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)
d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)
e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)
Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)
\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)⇒ H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).
Lời giải

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC)
⇒ MNCD là hình bình hành (1)
MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2)
Từ (1) và (2) ⇒ MNCD là hình thoi.
b. Do MN // AB // CD (câu a) và M là trung điểm AD
⇒ F là trung điểm EC ⇒ MF là đường trung tuyến của ∆MEC với lại MF là đường cao của ∆MEC (MF ⊥ EC) ⇒ ∆MEC cân tại M
c. ∆MEC cân tại M và MF là đường cao của ∆MEC
⇒ MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\)
\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác
Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.