Câu hỏi:

13/07/2024 1,091

Cho hình chữ nhật ABCD có AB = a = 12 cm, BC = b = 9 cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.

a. Chứng minh ΔAHB ΔBCD.

b. Tính độ dài đoạn thẳng AH.

c. Tính diện tích ∆AHB.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chữ nhật ABCD có AB = a = 12 cm, BC = b = 9 cm. Gọi H là chân đường (ảnh 1)

a. Xét ΔAHB và ΔBCD, ta có: \(\widehat {AHB} = \widehat {BCD} = 90^\circ \)

AB // CD (gt) nên \(\widehat {ABH} = \widehat {BDC}\) (so le trong)

Vậy ΔAHB ΔBCD (g.g)

b. Vì ΔAHB ΔBCD nên: \(\frac{{AH}}{{BC}} = \frac{{AB}}{{BD}} \Rightarrow AH = \frac{{AB.BC}}{{BD}}\)

Áp dụng định lí Pi–ta–go vào tam giác vuông BCD, ta có:

BD2 = BC2 + CD2 = BC2 + AB2 = 122 + 92 = 225 BD = 15 cm

Vậy AH = \(\frac{{12.9}}{{15}}\)=  7,2cm.

c. Ta có diện tích tam giác BCD là SBCD = \(\frac{1}{2}BC.CD = \frac{1}{2}.9.12 = 54\) (cm2).

Vì ∆AHB ∆BCD với tỉ số đồng dạng \(k = \frac{{AH}}{{BC}} = \frac{{7,2}}{9} = 0,8\) nên \(\frac{{{S_{AHB}}}}{{{S_{BCD}}}} = {k^2} = 0,{8^2} = 0,64\)

Suy ra SAHB = 0,64SBCD = 0,64 . 54 = 34,56 (cm2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có AD không song song với BC, lấy I SA so cho SA = 3IA, lấy J SC; M là trung điểm SB.

a. Tìm giao tuyến của (SAD) và (SBC).

b. Tìm giao điểm E của AB và (IJM).

c. Tìm giao điểm F của BC và (IJM).

d. Tìm giao điểm N của SD và (IJM).

e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.

Xem đáp án » 13/07/2024 15,042

Câu 2:

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE AB, nối E với trung điểm M của AD, từ M kẻ MF CE, MF ∩ BC = N.

a. Hỏi MNCD là hình gì?

b. ∆EMC là tam giác gì?

c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)

Xem đáp án » 13/07/2024 14,969

Câu 3:

Giải phương trình: \({\cos ^2}x - \sin 2x = 0\).

Xem đáp án » 13/07/2024 14,830

Câu 4:

Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.

Xem đáp án » 13/07/2024 3,579

Câu 5:

Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.

a. Chứng minh: OD AB và từ đó suy ra D là trung điểm của AB.

b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).

c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.

Xem đáp án » 13/07/2024 3,431

Câu 6:

Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.

a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.

b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.

Xem đáp án » 13/07/2024 3,234

Câu 7:

Phân tích đa thức thành nhân tử: a3 – 3a + 3b – b3.

Xem đáp án » 13/07/2024 2,516

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store