Câu hỏi:
11/07/2024 434Cho ∆ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Cho diện tích ∆ABC bằng 24 cm2. Tính diện tích ∆MNP.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét ∆ABC có: M là trung điểm của AB (GT); P là trung điểm của BC (GT)
⇒ MP là đường trung bình ∆ABC ⇒ MP //= \(\frac{1}{2}\)AC
Do đó, ta chứng minh được hai tam giác BMP và BAC đồng dạng với nhau theo tỉ số \(\frac{1}{2}\).
\( \Rightarrow {S_{\Delta BMP}} = {\left( {\frac{1}{2}} \right)^2}{S_{\Delta ABC}} = \frac{1}{4}.24 = 6\left( {c{m^2}} \right)\)
Chứng minh tương tự, ta được: \({S_{\Delta CPN}} = {S_{\Delta AMN}} = 6\,\,c{m^2}\).
Do đó, \({S_{\Delta MNP}} = {S_{\Delta ABC}} - \left( {{S_{\Delta BMP}} + {S_{\Delta CPN}} + {S_{\Delta AMN}}} \right) = 24 - \left( {6 + 6 + 6} \right) = 6\,\,\left( {c{m^2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có AD không song song với BC, lấy I ∈ SA so cho SA = 3IA, lấy J ∈ SC; M là trung điểm SB.
a. Tìm giao tuyến của (SAD) và (SBC).
b. Tìm giao điểm E của AB và (IJM).
c. Tìm giao điểm F của BC và (IJM).
d. Tìm giao điểm N của SD và (IJM).
e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.
Câu 2:
Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE ⊥ AB, nối E với trung điểm M của AD, từ M kẻ MF ⊥ CE, MF ∩ BC = N.
a. Hỏi MNCD là hình gì?
b. ∆EMC là tam giác gì?
c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)
Câu 4:
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.
Câu 5:
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.
a. Chứng minh: OD ⊥ AB và từ đó suy ra D là trung điểm của AB.
b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).
c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.
Câu 6:
Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.
b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!