Câu hỏi:

05/05/2023 3,710

Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau:

Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau:  Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số g(x) = f(x^3/9) - m(x^2 + 9)^2/18   nghịch biến trên khoảng (0;5)? (ảnh 1)
Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số gx=fx39mx2+9218 nghịch biến trên khoảng (0;5)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Đặt t=x39t'=x230x0;5t0;539. Ta có t=x39x=9t3x2=333t23.

Khi đó ta cần tìm m để hàm số ht=ftm33t23+322 nghịch biến trên 0;539.

Ta có h't=f't2333.m33t23+3t13=f't2333.m33t13+3t13.

Để ht nghịch biến trên 0;539h't=f't2333.m33t13+3t130t0;539

mf'tutt0;539 với ut=233333t13+3t13

Ta có u't=293333t233t43. Ta có u't=033t233t43=0t=3.

Bảng biến thiên:

Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau:  Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số g(x) = f(x^3/9) - m(x^2 + 9)^2/18   nghịch biến trên khoảng (0;5)? (ảnh 2)

Từ bảng biến thiên ta thấy được utu3t0;539, mà f'tf'3t0;539

Khi đó mf'tutt0;539mf'3u3=18.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD =  a căn bậc hai 3, cạnh bên SA vuông góc với (ABCD). Khoảng cách từ B đến mặt phẳng (SAC) bằng (ảnh 1)

Vẽ BHAC tại H, khi đó BHACBHSA   SAABC nên BHSAC

Do đó dB,SAC=BH.

Ta có BH=BA2.BC2BA2+BC2=a2.a32a2+a32=a32, với BC=AD=a3.

Vậy dB,SAC=a32

Lời giải

Chọn A

Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân, AB = AC = 2, góc BAC = 120 độ. Mặt phẳng (AB'C') tạo với mặt đáy một góc 60 độ . Tính thể tích V của khối lăng trụ đã cho. (ảnh 1)

Gọi H là trung điểm B'C'. Ta có A'HB'C', do đó góc giữa hai mặt phẳng (AB'C') và (ABC) là AHA'^=60°.

A'H=A'B.cos60°=2.12=1.

Trong tam giác A'B'C' có SA'B'C'=12A'B'.A'C'.sinB'A'C'^=12.2.2.sin120°=3.

Trong tam giác AHA' vuông tại A' ta có : AA'=A'H.tan60°=3.

Do đó VABC.A'B'C'=SA'B'C'.AA'=3.3=3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trên khoảng 0;+, đạo hàm của hàm số y = logx là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay