Câu hỏi:

05/05/2023 2,432

Cho hàm số y = f(x) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Có bao nhiêu giá trị nguyên của m để phương trình 2^ f(x) + 4/ f(x) + log 2 [f^2(x) - 4f(x) + 5] = m có 6 nghiệm thực phân biệt? (ảnh 1)
Có bao nhiêu giá trị nguyên của m để phương trình 2fx+4fx+log2f2x4fx+5=m  có 6 nghiệm thực phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Đặt hx=2x+4x+log2x24x+5; gx=2fx+4fx+log2f2x4fx+5.

Suy ra: gx=hfx. Ta thấy fx>0x nên ở đây ta chỉ xét hàm hx trên 0;+.

h'x=14x22x+4xln2+2x2x24x+5ln2=x2x+2x22x+4xln2+2x24x+5ln2;

h'x=0x=2.

Ta có: 2fx+4fx+log2f2x4fx+5=mgx=m.

Suy ra: phương trình đã cho có 6 nghiệm thực phân biệt khi đồ thị hàm số y = g(x) và đường thẳng y = m có đúng 6 điểm chung phân biệt.

Cho hàm số y = f(x) có bảng biến thiên như sau Có bao nhiêu giá trị nguyên của m để phương trình 2^ f(x) + 4/ f(x) + log 2 [f^2(x) - 4f(x) + 5] = m có 6 nghiệm thực phân biệt? (ảnh 2)

Vậy phương trình đã cho có 6 nghiệm thực phân biệt khi 16<m<1+213321,16.

Suy ra có 5 giá trị nguyên của m thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD =  a căn bậc hai 3, cạnh bên SA vuông góc với (ABCD). Khoảng cách từ B đến mặt phẳng (SAC) bằng (ảnh 1)

Vẽ BHAC tại H, khi đó BHACBHSA   SAABC nên BHSAC

Do đó dB,SAC=BH.

Ta có BH=BA2.BC2BA2+BC2=a2.a32a2+a32=a32, với BC=AD=a3.

Vậy dB,SAC=a32

Lời giải

Chọn A

Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân, AB = AC = 2, góc BAC = 120 độ. Mặt phẳng (AB'C') tạo với mặt đáy một góc 60 độ . Tính thể tích V của khối lăng trụ đã cho. (ảnh 1)

Gọi H là trung điểm B'C'. Ta có A'HB'C', do đó góc giữa hai mặt phẳng (AB'C') và (ABC) là AHA'^=60°.

A'H=A'B.cos60°=2.12=1.

Trong tam giác A'B'C' có SA'B'C'=12A'B'.A'C'.sinB'A'C'^=12.2.2.sin120°=3.

Trong tam giác AHA' vuông tại A' ta có : AA'=A'H.tan60°=3.

Do đó VABC.A'B'C'=SA'B'C'.AA'=3.3=3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trên khoảng 0;+, đạo hàm của hàm số y = logx là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay