Câu hỏi:

19/08/2025 9,459 Lưu

Cho ∆ABC vuông tại A, có phân giác AD.

Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Media VietJack\(\) \(\)

Kẻ DE AB tại E, DF AC tại F.

Ta có: Tứ giác AFDE là hình chữ nhật do \(\widehat A = \widehat E = \widehat F = 90^\circ \), AD là phân giác trong của \(\widehat {EAF}\) nên AFDE là hình vuông. Suy ra: \(DE = DF = \frac{{AD\sqrt 2 }}{2}\)

∆ABC có AB // DF (cùng vuông góc với CA) \( \Rightarrow \frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}\)

Tương tự với AC // DE \( \Rightarrow \frac{{DE}}{{AC}} = \frac{{BD}}{{BC}} \Rightarrow \frac{{DF}}{{AB}} + \frac{{DE}}{{AC}} = \frac{{CD + BD}}{{BC}}\)

\( \Leftrightarrow \frac{{AD}}{{AB\sqrt 2 }} + \frac{{AD}}{{AC\sqrt 2 }} = \frac{{BC}}{{BC}} \Leftrightarrow \frac{{AD}}{{AB\sqrt 2 }} + \frac{{AD}}{{AC\sqrt 2 }} = 1\)

\( \Leftrightarrow \frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

T

Thủy Châu Đinh

• (\triangle)ADE vuông tại A nên DE = (\sqrt{AD^2 + AE^2} = \sqrt{AD^2 + AD^2} = AD\sqrt{2})

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Media VietJack

a) ABCD là hình thang cân 

\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)

\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)

ΔODC cân tại O OC = OD

Mà AD = BC (ABCD là hình thang cân) OA = OB ΔOAB cân tại O

b) ABCD là hình thang cân

\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)

Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)

c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)

Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)

ΔDEC cân tại E

d) EC = ED

Mà AC = BD (ABCD là hình thang cân)

EA = EB

Lại có OA = OB

OE là đường trung trực AB

OD = OC; EC = ED

OE là đường trung trực CD.

Lời giải

Lời giải:

Media VietJack

Xét ΔABC có \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\)

Do đó: DE // CB

Xét tứ giác BEDC có DE // BC nên BEDC là hình thang

Mà \(\widehat {EBC} = \widehat {DCB}\) nên BEDC là hình thang cân

Vậy BEDC là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP