Câu hỏi:

13/07/2024 6,222

Cho ∆ABC vuông tại A, có phân giác AD.

Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack\(\) \(\)

Kẻ DE AB tại E, DF AC tại F.

Ta có: Tứ giác AFDE là hình chữ nhật do \(\widehat A = \widehat E = \widehat F = 90^\circ \), AD là phân giác trong của \(\widehat {EAF}\) nên AFDE là hình vuông. Suy ra: \(DE = DF = \frac{{AD\sqrt 2 }}{2}\)

∆ABC có AB // DF (cùng vuông góc với CA) \( \Rightarrow \frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}\)

Tương tự với AC // DE \( \Rightarrow \frac{{DE}}{{AC}} = \frac{{BD}}{{BC}} \Rightarrow \frac{{DF}}{{AB}} + \frac{{DE}}{{AC}} = \frac{{CD + BD}}{{BC}}\)

\( \Leftrightarrow \frac{{AD}}{{AB\sqrt 2 }} + \frac{{AD}}{{AC\sqrt 2 }} = \frac{{BC}}{{BC}} \Leftrightarrow \frac{{AD}}{{AB\sqrt 2 }} + \frac{{AD}}{{AC\sqrt 2 }} = 1\)

\( \Leftrightarrow \frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

Bình luận


Bình luận

Thủy Châu Đinh
17:57 - 23/02/2025

• (\triangle)ADE vuông tại A nên DE = (\sqrt{AD^2 + AE^2} = \sqrt{AD^2 + AD^2} = AD\sqrt{2})

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 43,910

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,920

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,900

Câu 4:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 12/07/2024 13,030

Câu 5:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 13,016

Câu 6:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,730

Câu 7:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 8,075