Trong không gian, cho hai điểm A, B cố định. Tập hợp các điểm M sao cho \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} } \right| = 42\).
Quảng cáo
Trả lời:
Lời giải:
Gọi I là điểm thỏa mãn \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0 \), tức là \(\overrightarrow {IA} = - \frac{3}{2}\overrightarrow {IB} \), suy ra điểm I thuộc đoạn thẳng AB sao cho \(IA = \frac{3}{2}IB\).
Vì A, B cố định nên I cố định.
Ta có: \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} } \right| = \left| {2\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right) + 3\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)} \right|\)
\( = \left| {5\overrightarrow {MI} + \left( {2\overrightarrow {IA} + 3\overrightarrow {IB} } \right)} \right| = \left| {5\overrightarrow {MI} } \right| = 5MI\).
Để \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} } \right| = 42\) thì 5MI = 42, suy ra \(MI = \frac{{42}}{5}\), do đó điểm M luôn cách điểm I cố định một đoạn bằng \(\frac{{42}}{5}\).
Vậy tập hợp các điểm M là đường tròn cố định tâm I, bán kính bằng \(\frac{{42}}{5}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:

a) ABCD là hình thang cân
\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)
\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)
⇒ ΔODC cân tại O ⇒ OC = OD
Mà AD = BC (ABCD là hình thang cân) ⇒ OA = OB ⇒ ΔOAB cân tại O
b) ABCD là hình thang cân
\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)
Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)
c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)
⇒ ΔDEC cân tại E
d) EC = ED
Mà AC = BD (ABCD là hình thang cân)
⇒ EA = EB
Lại có OA = OB
⇒ OE là đường trung trực AB
OD = OC; EC = ED
⇒ OE là đường trung trực CD.
Lời giải
Lời giải:

Xét ΔABC có \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\)
Do đó: DE // CB
Xét tứ giác BEDC có DE // BC nên BEDC là hình thang
Mà \(\widehat {EBC} = \widehat {DCB}\) nên BEDC là hình thang cân
Vậy BEDC là hình thang cân.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.