Câu hỏi:

12/07/2024 4,748

Cho ∆ABC vuông tại A, AB = 10 cm, AC = 15 cm.

a. Tính \(\widehat B\).

b. Phân giác trong \(\widehat B\) cắt AC tại I. Tính độ dài AI.

c. Vẽ AH BI tại H. Tính độ dài AH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a. Ta có: \(\tan \widehat B = \frac{{AC}}{{AB}} = \frac{{15}}{{10}} = \frac{3}{2} \Rightarrow \widehat B \approx 56^\circ \).

b. Xét ∆ABI có: \(\widehat {{B_1}} = \frac{{\widehat B}}{2} = \frac{{56^\circ }}{2} = 28^\circ \)

Mà \(\tan \widehat {{B_1}} = \frac{{AI}}{{AB}} \Rightarrow AI = AB.\tan \widehat {{B_1}} = 10.\tan 28^\circ \approx 5,3\left( {cm} \right)\)

c. Xét ∆ABH có: \(\widehat {{B_1}} = 28^\circ \left( {cmt} \right)\)

Mà \(\sin \widehat {{B_1}} = \frac{{AH}}{{AB}} \Rightarrow AH = AB.\sin \widehat {{B_1}} = 10.\sin 28^\circ \approx 4,7\left( {cm} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Media VietJack

a) ABCD là hình thang cân 

\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)

\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)

ΔODC cân tại O OC = OD

Mà AD = BC (ABCD là hình thang cân) OA = OB ΔOAB cân tại O

b) ABCD là hình thang cân

\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)

Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)

c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)

Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)

ΔDEC cân tại E

d) EC = ED

Mà AC = BD (ABCD là hình thang cân)

EA = EB

Lại có OA = OB

OE là đường trung trực AB

OD = OC; EC = ED

OE là đường trung trực CD.

Lời giải

Lời giải:

Media VietJack

Theo hệ quả của định lí côsin ta có:

\[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2}\]

 \( \Rightarrow \widehat A = 60^\circ \).

Diện tích tam giác ABC là \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin 60^\circ = 10\sqrt 3 \).

Vì \(S = \frac{1}{2}a{h_a}\) nên \({h_a} = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7}\)

Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7.8.5}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP