Câu hỏi:
12/07/2024 1,389Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Gọi AH là đường cao của tam giác ABC.
Ta có: \(\widehat {BCA} = 135^\circ \Rightarrow \widehat {ACH} = 180^\circ - 135^\circ = 45^\circ \)
BC = BH – CH = cot30°.AH – cot45°.AH = \(AH\left( {\sqrt 3 - 1} \right) = 2\)
\( \Rightarrow AH = \frac{2}{{\sqrt 3 - 1}} = \sqrt 3 + 1\left( {cm} \right)\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}BC.AH = \frac{1}{2}.2.\left( {\sqrt 3 + 1} \right) = \sqrt 3 + 1\left( {c{m^2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!