Câu hỏi:

13/05/2023 201

Cho ∆ABC vuông tại A; AB = 3; AC = 4. Giải ∆ABC. Gọi I là trung điểm của BC, vẽ AH BC. Tính \(\widehat B,\,\widehat C\) AH; AI.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

Ta có ∆ABC vuông tại A \( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\)

\(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{4}{5} \Rightarrow \widehat B = 53,13^\circ \Rightarrow \widehat C = 90^\circ - 53,13^\circ \approx 36,87^\circ \)

Lại có: AH.BC = AB.AC \( \Leftrightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{3.4}}{5} = 2,4\)

∆ABC có \(\widehat A = 90^\circ ;IB = IC \Rightarrow AI = \frac{1}{2}BC\) (Tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng \(\frac{1}{2}\) cạnh huyền) AI = 2,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 43,035

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,379

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,623

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 12,642

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,666

Câu 6:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 12/07/2024 8,290

Câu 7:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 7,620

Bình luận


Bình luận