Câu hỏi:

12/07/2024 2,067

Rút gọn biểu thức: \(\left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right).\left( {1 - \frac{1}{{{4^2}}}} \right).....\left( {1 - \frac{1}{{{n^2}}}} \right)\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có công thức: \(1 - \frac{1}{{{k^2}}} = \frac{{{k^2} - {1^2}}}{{{k^2}}} = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)}}{{{k^2}}}\)

Áp dụng công thức trên ta được:

\(\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right)....\left( {1 - \frac{1}{{{n^2}}}} \right) = \frac{{{2^2} - {1^2}}}{{{2^2}}}.\frac{{{3^2} - {1^2}}}{{{3^2}}}.\frac{{{4^2} - {1^2}}}{{{4^2}}}....\frac{{{n^2} - {1^2}}}{{{n^2}}}\)

\( = \frac{{\left( {2 + 1} \right)\left( {2 - 1} \right)}}{{2.2}}.\frac{{\left( {3 + 1} \right)\left( {3 - 1} \right)}}{{3.3}}.\frac{{\left( {4 + 1} \right)\left( {4 - 1} \right)}}{{4.4}}....\frac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{n.n}}\)

\( = \frac{{1.3}}{{2.2}} = \frac{{2.4}}{{3.3}} = \frac{{3.5}}{{4.4}}....\frac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{n.n}} = \frac{{\left[ {1.2.3...\left( {n + 1} \right)} \right].\left[ {3.4.5...\left( {n - 1} \right)} \right]}}{{\left( {2.3.4...n} \right)\left( {2.3.4...n} \right)}}\)

\( = \left( {n + 1} \right).\frac{1}{{2n}} = \frac{{n + 1}}{{2n}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 43,889

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,886

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,878

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 13,014

Câu 5:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 12/07/2024 12,866

Câu 6:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,727

Câu 7:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 8,043