Câu hỏi:

12/07/2024 1,534

Rút gọn biểu thức: \(\left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right).\left( {1 - \frac{1}{{{4^2}}}} \right).....\left( {1 - \frac{1}{{{n^2}}}} \right)\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có công thức: \(1 - \frac{1}{{{k^2}}} = \frac{{{k^2} - {1^2}}}{{{k^2}}} = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)}}{{{k^2}}}\)

Áp dụng công thức trên ta được:

\(\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right)....\left( {1 - \frac{1}{{{n^2}}}} \right) = \frac{{{2^2} - {1^2}}}{{{2^2}}}.\frac{{{3^2} - {1^2}}}{{{3^2}}}.\frac{{{4^2} - {1^2}}}{{{4^2}}}....\frac{{{n^2} - {1^2}}}{{{n^2}}}\)

\( = \frac{{\left( {2 + 1} \right)\left( {2 - 1} \right)}}{{2.2}}.\frac{{\left( {3 + 1} \right)\left( {3 - 1} \right)}}{{3.3}}.\frac{{\left( {4 + 1} \right)\left( {4 - 1} \right)}}{{4.4}}....\frac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{n.n}}\)

\( = \frac{{1.3}}{{2.2}} = \frac{{2.4}}{{3.3}} = \frac{{3.5}}{{4.4}}....\frac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{n.n}} = \frac{{\left[ {1.2.3...\left( {n + 1} \right)} \right].\left[ {3.4.5...\left( {n - 1} \right)} \right]}}{{\left( {2.3.4...n} \right)\left( {2.3.4...n} \right)}}\)

\( = \left( {n + 1} \right).\frac{1}{{2n}} = \frac{{n + 1}}{{2n}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 42,418

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,193

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,541

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 12,525

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,633

Câu 6:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 7,281

Câu 7:

Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.

a. Chứng minh CK = BH.tanBAC.

b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).

Xem đáp án » 12/07/2024 6,840

Bình luận


Bình luận