Rút gọn biểu thức: \(\left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right).\left( {1 - \frac{1}{{{4^2}}}} \right).....\left( {1 - \frac{1}{{{n^2}}}} \right)\).
Quảng cáo
Trả lời:
Lời giải:
Ta có công thức: \(1 - \frac{1}{{{k^2}}} = \frac{{{k^2} - {1^2}}}{{{k^2}}} = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)}}{{{k^2}}}\)
Áp dụng công thức trên ta được:
\(\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right)....\left( {1 - \frac{1}{{{n^2}}}} \right) = \frac{{{2^2} - {1^2}}}{{{2^2}}}.\frac{{{3^2} - {1^2}}}{{{3^2}}}.\frac{{{4^2} - {1^2}}}{{{4^2}}}....\frac{{{n^2} - {1^2}}}{{{n^2}}}\)
\( = \frac{{\left( {2 + 1} \right)\left( {2 - 1} \right)}}{{2.2}}.\frac{{\left( {3 + 1} \right)\left( {3 - 1} \right)}}{{3.3}}.\frac{{\left( {4 + 1} \right)\left( {4 - 1} \right)}}{{4.4}}....\frac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{n.n}}\)
\( = \frac{{1.3}}{{2.2}} = \frac{{2.4}}{{3.3}} = \frac{{3.5}}{{4.4}}....\frac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{n.n}} = \frac{{\left[ {1.2.3...\left( {n + 1} \right)} \right].\left[ {3.4.5...\left( {n - 1} \right)} \right]}}{{\left( {2.3.4...n} \right)\left( {2.3.4...n} \right)}}\)
\( = \left( {n + 1} \right).\frac{1}{{2n}} = \frac{{n + 1}}{{2n}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:

a) ABCD là hình thang cân
\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)
\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)
⇒ ΔODC cân tại O ⇒ OC = OD
Mà AD = BC (ABCD là hình thang cân) ⇒ OA = OB ⇒ ΔOAB cân tại O
b) ABCD là hình thang cân
\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)
Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)
c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)
⇒ ΔDEC cân tại E
d) EC = ED
Mà AC = BD (ABCD là hình thang cân)
⇒ EA = EB
Lại có OA = OB
⇒ OE là đường trung trực AB
OD = OC; EC = ED
⇒ OE là đường trung trực CD.
Lời giải
Lời giải:

Xét ΔABC có \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\)
Do đó: DE // CB
Xét tứ giác BEDC có DE // BC nên BEDC là hình thang
Mà \(\widehat {EBC} = \widehat {DCB}\) nên BEDC là hình thang cân
Vậy BEDC là hình thang cân.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.