Câu hỏi:

12/07/2024 250

Giải phương trình: \({\left( {\sin \frac{x}{2} + \cos \frac{x}{2}} \right)^2} + \sqrt 3 \cos x = 2\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

\({\left( {\sin \frac{x}{2} + \cos \frac{x}{2}} \right)^2} + \sqrt 3 \cos x = 2\)

\( \Leftrightarrow {\sin ^2}\frac{x}{2} + 2.\sin \frac{x}{2}.cos\frac{x}{2} + {\cos ^2}\frac{x}{2} + \sqrt 3 \cos x = 2\)

\( \Leftrightarrow 1 + \sin x + \sqrt 3 \cos x = 2\)

\( \Leftrightarrow \sin x + \sqrt 3 \cos x = 1\)

\( \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{1}{2}\)

\( \Leftrightarrow \cos \frac{\pi }{3}.\sin x + \sin \frac{\pi }{3}.\cos x = \frac{1}{2}\)

\( \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi }\\{x + \frac{\pi }{3} = \pi - \frac{\pi }{6} + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{6} + k2\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 42,570

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,227

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,559

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 12,563

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,640

Câu 6:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 7,383

Câu 7:

Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.

a. Chứng minh CK = BH.tanBAC.

b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).

Xem đáp án » 12/07/2024 6,884

Bình luận


Bình luận