Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Điều kiện: \(x \ne \frac{\pi }{2} + k\pi \,\left( {k \in \mathbb{Z}} \right)\).
\(1 + \tan x = 2\sqrt 2 \sin x\)
\( \Leftrightarrow 1 + \frac{{\sin x}}{{\cos x}} = 2\sqrt 2 \sin x\)
\( \Leftrightarrow \frac{{\cos x + \sin x}}{{\cos x}} = 2\sqrt 2 \sin x\)
\( \Rightarrow \cos x + \sin x = 2\sqrt 2 \sin x\cos x\)
\( \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = \sqrt 2 \sin 2x\)
\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 2x\)
\( \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = 2x + k2\pi \\x + \frac{\pi }{4} = \pi - 2x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{\pi }{4} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\)
Kết hợp với điều kiện, vậy nghiệm của phương trình là \(x = \frac{\pi }{4} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!