Trong mặt phẳng toạ độ Oxy cho 3 đường thẳng (d): y = x – 4; (d1): x + 2y = –2; (d2): y = –2x + 2. Chứng minh rằng nếu M ∈ (d) thì M cách đều (d1) và (d2).
Quảng cáo
Trả lời:
Lời giải:
Nếu M ∈ d \( \Rightarrow M\left( {{x_M},{x_{M - 4}}} \right)\)
\(d\left( {M,{d_1}} \right) = \frac{{\left| {{x_M} + 2{y_M} + 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{\left| {{x_M} + 2\left( {{x_M} - 4} \right) + 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{\left| {3{x_M} - 6} \right|}}{{\sqrt 5 }}\)
\(d\left( {M,{d_2}} \right) = \frac{{\left| { - 2{x_M} - {y_M} + 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{\left| { - 2{x_M} - \left( {{x_M} - 4} \right) + 2} \right|}}{{\sqrt 5 }} = \frac{{\left| { - 3{x_M} + 6} \right|}}{{\sqrt 5 }} = \frac{{\left| {3{x_M} - 6} \right|}}{{\sqrt 5 }}\)
\( \Rightarrow d\left( {M,{d_1}} \right) = d\left( {M,{d_2}} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:

a) ABCD là hình thang cân
\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)
\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)
⇒ ΔODC cân tại O ⇒ OC = OD
Mà AD = BC (ABCD là hình thang cân) ⇒ OA = OB ⇒ ΔOAB cân tại O
b) ABCD là hình thang cân
\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)
Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)
c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)
⇒ ΔDEC cân tại E
d) EC = ED
Mà AC = BD (ABCD là hình thang cân)
⇒ EA = EB
Lại có OA = OB
⇒ OE là đường trung trực AB
OD = OC; EC = ED
⇒ OE là đường trung trực CD.
Lời giải
Lời giải:

Xét ΔABC có \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\)
Do đó: DE // CB
Xét tứ giác BEDC có DE // BC nên BEDC là hình thang
Mà \(\widehat {EBC} = \widehat {DCB}\) nên BEDC là hình thang cân
Vậy BEDC là hình thang cân.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.