Câu hỏi:
11/07/2024 825Cho ∆ABC cân tại A, đường cao AD, trực tâm H.
a) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng: ABEC là tứ giác nội tiếp.
b) Tính HD và bán kính đường tròn ngoại tiếp ∆ABC biết HA = 7 cm, HB = 2 cm.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) ΔABC cân tại A có đường cao AD
⇒ AD đồng thời là đường trung tuyến của ΔABC ⇒ D là trung điểm BC.
Mà D là trung điểm EH (vì E và H đối xứng qua D).
⇒ Tứ giác BECH là hình bình hành.
Ta lại có: BC ⊥ EH tại D ⇒ BECH là hình thoi ⇒ BH = BE.
BE // CH; CE // BH; H là trực tâm ΔABC ⇒ CH ⊥ AB ⇒ BE ⊥ AB
BH ⊥ AC ⇒ CE ⊥ AC
\( \Rightarrow \widehat {ABE} = \widehat {ACE} = 90^\circ ;\widehat {ABE} + \widehat {ACE} = 180^\circ \)
⇒ ABEC nội tiếp đường tròn (O) đường kính AE (với O là trung điểm AE).
b) Ta có: BE = HB; DE = HD (câu a)
AE = HA + HD + DE = HA + 2HD
Đặt HD = x (x > 0)
HA = 7 cm; HB = 2 cm
ΔABE vuông tại B đường cao BD
\( \Rightarrow B{E^2} = DE.AE\) (hệ thức lượng trong ∆ vuông)
⇔ \(H{B^2}\)= HD.(HA + 2HD)
⇔ 22 = x(7 + 2x)
⇔ \(2{x^2}\)+ 7x – 4 = 0
⇔ \(2{x^2}\)+ 8x – x – 4 = 0
⇔ 2x(x + 4) − (x + 4) = 0
⇔ (x + 4)(2x − 1) = 0
⇔ x = −4 (loại) hoặc x = 0,5 (nhận)
⇒ HD = x = 0,5 cm
⇒ AE = HA + 2HD = 7 + 2.0,5 = 8 cm
⇒ R = OA = 12AE = 12.8 = 4 cm
Vậy HD = 0,5cm và bán kính đường tròn (O) ngoại tiếp ΔABC là R = 4 cm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 986
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.
Câu 4:
Câu 5:
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận