Câu hỏi:
11/07/2024 872
Cho ∆ABC cân tại A, đường cao AD, trực tâm H.
a) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng: ABEC là tứ giác nội tiếp.
b) Tính HD và bán kính đường tròn ngoại tiếp ∆ABC biết HA = 7 cm, HB = 2 cm.
Cho ∆ABC cân tại A, đường cao AD, trực tâm H.
a) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng: ABEC là tứ giác nội tiếp.
b) Tính HD và bán kính đường tròn ngoại tiếp ∆ABC biết HA = 7 cm, HB = 2 cm.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) ΔABC cân tại A có đường cao AD
⇒ AD đồng thời là đường trung tuyến của ΔABC ⇒ D là trung điểm BC.
Mà D là trung điểm EH (vì E và H đối xứng qua D).
⇒ Tứ giác BECH là hình bình hành.
Ta lại có: BC ⊥ EH tại D ⇒ BECH là hình thoi ⇒ BH = BE.
BE // CH; CE // BH; H là trực tâm ΔABC ⇒ CH ⊥ AB ⇒ BE ⊥ AB
BH ⊥ AC ⇒ CE ⊥ AC
\( \Rightarrow \widehat {ABE} = \widehat {ACE} = 90^\circ ;\widehat {ABE} + \widehat {ACE} = 180^\circ \)
⇒ ABEC nội tiếp đường tròn (O) đường kính AE (với O là trung điểm AE).
b) Ta có: BE = HB; DE = HD (câu a)
AE = HA + HD + DE = HA + 2HD
Đặt HD = x (x > 0)
HA = 7 cm; HB = 2 cm
ΔABE vuông tại B đường cao BD
\( \Rightarrow B{E^2} = DE.AE\) (hệ thức lượng trong ∆ vuông)
⇔ \(H{B^2}\)= HD.(HA + 2HD)
⇔ 22 = x(7 + 2x)
⇔ \(2{x^2}\)+ 7x – 4 = 0
⇔ \(2{x^2}\)+ 8x – x – 4 = 0
⇔ 2x(x + 4) − (x + 4) = 0
⇔ (x + 4)(2x − 1) = 0
⇔ x = −4 (loại) hoặc x = 0,5 (nhận)
⇒ HD = x = 0,5 cm
⇒ AE = HA + 2HD = 7 + 2.0,5 = 8 cm
⇒ R = OA = 12AE = 12.8 = 4 cm
Vậy HD = 0,5cm và bán kính đường tròn (O) ngoại tiếp ΔABC là R = 4 cm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) ABCD là hình thang cân
\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)
\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)
⇒ ΔODC cân tại O ⇒ OC = OD
Mà AD = BC (ABCD là hình thang cân) ⇒ OA = OB ⇒ ΔOAB cân tại O
b) ABCD là hình thang cân
\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)
Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)
c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)
⇒ ΔDEC cân tại E
d) EC = ED
Mà AC = BD (ABCD là hình thang cân)
⇒ EA = EB
Lại có OA = OB
⇒ OE là đường trung trực AB
OD = OC; EC = ED
⇒ OE là đường trung trực CD.
Lời giải
Lời giải:
Theo hệ quả của định lí côsin ta có:
\[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2}\]
\( \Rightarrow \widehat A = 60^\circ \).
Diện tích tam giác ABC là \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin 60^\circ = 10\sqrt 3 \).
Vì \(S = \frac{1}{2}a{h_a}\) nên \({h_a} = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7}\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7.8.5}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.