Câu hỏi:

11/07/2024 777

Cho ∆ABC cân tại A, đường cao AD, trực tâm H.

a) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng: ABEC là tứ giác nội tiếp.

b) Tính HD và bán kính đường tròn ngoại tiếp ∆ABC biết HA = 7 cm, HB = 2 cm.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) ΔABC cân tại A có đường cao AD

AD đồng thời là đường trung tuyến của ΔABC D là trung điểm BC.

Mà D là trung điểm EH (vì E và H đối xứng qua D).

Tứ giác BECH là hình bình hành.

Ta lại có: BC EH tại D BECH là hình thoi BH = BE.

BE // CH; CE // BH; H là trực tâm ΔABC CH AB BE AB

BH AC CE AC

\( \Rightarrow \widehat {ABE} = \widehat {ACE} = 90^\circ ;\widehat {ABE} + \widehat {ACE} = 180^\circ \)

ABEC nội tiếp đường tròn (O) đường kính AE (với O là trung điểm AE).

b) Ta có: BE = HB; DE = HD (câu a)

AE = HA + HD + DE = HA + 2HD

Đặt HD = x (x > 0)

HA = 7 cm; HB = 2 cm

ΔABE vuông tại B đường cao BD

\( \Rightarrow B{E^2} = DE.AE\) (hệ thức lượng trong ∆ vuông)

\(H{B^2}\)= HD.(HA + 2HD)

22 = x(7 + 2x)

\(2{x^2}\)+ 7x 4 = 0

\(2{x^2}\)+ 8x x 4 = 0

2x(x + 4) (x + 4) = 0

(x + 4)(2x 1) = 0

x = −4 (loại) hoặc x = 0,5 (nhận)

HD = x = 0,5 cm

AE = HA + 2HD = 7 + 2.0,5 = 8 cm

R = OA = 12AE = 12.8 = 4 cm

Vậy HD = 0,5cm và bán kính đường tròn (O) ngoại tiếp ΔABC là R = 4 cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 43,826

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,862

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,853

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 13,001

Câu 5:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 12/07/2024 12,458

Câu 6:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,719

Câu 7:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 7,982