Câu hỏi:

11/07/2024 575

Cho ∆ABC cân tại A, đường cao AD, trực tâm H.

a) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng: ABEC là tứ giác nội tiếp.

b) Tính HD và bán kính đường tròn ngoại tiếp ∆ABC biết HA = 7 cm, HB = 2 cm.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) ΔABC cân tại A có đường cao AD

AD đồng thời là đường trung tuyến của ΔABC D là trung điểm BC.

Mà D là trung điểm EH (vì E và H đối xứng qua D).

Tứ giác BECH là hình bình hành.

Ta lại có: BC EH tại D BECH là hình thoi BH = BE.

BE // CH; CE // BH; H là trực tâm ΔABC CH AB BE AB

BH AC CE AC

\( \Rightarrow \widehat {ABE} = \widehat {ACE} = 90^\circ ;\widehat {ABE} + \widehat {ACE} = 180^\circ \)

ABEC nội tiếp đường tròn (O) đường kính AE (với O là trung điểm AE).

b) Ta có: BE = HB; DE = HD (câu a)

AE = HA + HD + DE = HA + 2HD

Đặt HD = x (x > 0)

HA = 7 cm; HB = 2 cm

ΔABE vuông tại B đường cao BD

\( \Rightarrow B{E^2} = DE.AE\) (hệ thức lượng trong ∆ vuông)

\(H{B^2}\)= HD.(HA + 2HD)

22 = x(7 + 2x)

\(2{x^2}\)+ 7x 4 = 0

\(2{x^2}\)+ 8x x 4 = 0

2x(x + 4) (x + 4) = 0

(x + 4)(2x 1) = 0

x = −4 (loại) hoặc x = 0,5 (nhận)

HD = x = 0,5 cm

AE = HA + 2HD = 7 + 2.0,5 = 8 cm

R = OA = 12AE = 12.8 = 4 cm

Vậy HD = 0,5cm và bán kính đường tròn (O) ngoại tiếp ΔABC là R = 4 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 37,913

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 19,852

Câu 3:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 11,648

Câu 4:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 9,936

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,229

Câu 6:

Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.

a. Chứng minh CK = BH.tanBAC.

b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).

Xem đáp án » 12/07/2024 6,210

Câu 7:

Cho ∆ABC có BC = a, CA = b, AB = c.

Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).

Xem đáp án » 12/07/2024 5,989

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store