Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Đặt \(t = {x^2}\left( {t \ge 0} \right)\). Khi đó \({x^4} - 3{x^2} + 2 = 0\)\( \Leftrightarrow {t^2} - 3t + 2 = 0\)
Ta thấy 1 – 3 + 2 = 0. Nên PT có nghiệm t = 1 (TM) hoặc t = 2 (TM)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{{x^2} = 1}\\{{x^2} = 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \pm 1}\\{x = \pm \sqrt 2 }\end{array}} \right.\).
Vậy PT có 4 nghiệm phân biệt.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!