Câu hỏi:
13/05/2023 82Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
\(y = {\sin ^2}x - {\cos ^2}x + 2\sin x\cos x + 5 = \sin 2x - \cos 2x + 5 = \sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right) + 5\)
\(\begin{array}{l} - 1 \le \sin \left( {2x - \frac{\pi }{4}} \right) \le 1\\ \Rightarrow - \sqrt 2 \le \sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right) \le \sqrt 2 \\ \Rightarrow 5 - \sqrt 2 \le y \le 5 + \sqrt 2 \end{array}\)
\(\begin{array}{l} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{{\max }_y} = 5 + \sqrt 2 \Rightarrow 2x - \frac{\pi }{4} = \frac{\pi }{2} + k2\pi }\\{{{\min }_y} = 5 - \sqrt 2 \Rightarrow 2x - \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi }\end{array}} \right.\\ \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{{\max }_y} = 5 + \sqrt 2 \Rightarrow x = \frac{{3\pi }}{8} + k\pi }\\{{{\min }_y} = 5 - \sqrt 2 \Rightarrow x = - \frac{\pi }{8} + k\pi }\end{array},k \in \mathbb{Z}} \right.\end{array}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!