Câu hỏi:

13/05/2023 294

Hỏi có bao nhiêu số nguyên m để hàm số y = (m2 – 1)x3 + (m – 1)x2 – x + 4 nghịch biến trên khoảng (– ∞; + ∞)?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Đáp án đúng là: C

TH1: m2 – 1 = 0 m = ±1.

+ Với m = 1 ta có: y = −x + 4 nghịch biến trên  m = 1 thỏa mãn.

+ Với m = − 1,  ta có y = −2x2 – x + 4 là 1 parabol đồng biến trên \(\left( { - \infty ; - \frac{1}{4}} \right)\) và nghịch biến trên \(\left( { - \frac{1}{4}; + \infty } \right)\).

m = −1 không thỏa mãn.

TH2: m2 – 1 ≠ 0 m ≠ ± 1.

Ta có: y′ = 3(m2 – 1)x2 + 2(m – 1)x – 1

Hàm só nghịch biến trên  khi và chỉ khi:

y′ ≤ 0 \(\left\{ \begin{array}{l}{m^2} - 1 < 0\\\Delta ' = {\left( {m - 1} \right)^2} + 3\left( {{m^2} - 1} \right) \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 1\\4{m^2} - 2m - 2 \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 1\\ - \frac{1}{2} \le m \le 1\end{array} \right. \Leftrightarrow - \frac{1}{2} \le m < 1\)

Vì m ℤ nên m = 0

Vậy có 2 giá trị m thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 42,570

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,227

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,559

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 12,563

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,640

Câu 6:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 7,383

Câu 7:

Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.

a. Chứng minh CK = BH.tanBAC.

b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).

Xem đáp án » 12/07/2024 6,884

Bình luận


Bình luận