Câu hỏi:
13/05/2023 166Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Áp dụng định lý Pytago cho ∆ABC vuông tại C ta có:
\(A{B^2} = A{C^2} + B{C^2} = {0,9^2} + {1,2^2} = 0,81 + 1,44 = 2,25\)
AB = 1,5 (cm )
Ta có: \(\sin \widehat A = \frac{{BC}}{{AB}} = \frac{{1,2}}{{1,5}} = \frac{4}{5};cos\widehat A = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,5}} = \frac{3}{5}\)
\(\tan \widehat A = \frac{{BC}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3};\cot \widehat A = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,2}} = \frac{3}{4}\)
Do \(\widehat B + \widehat A = 90^\circ \) (tổng 2 góc nhọn trong tam giác vuông) nên suy ra:
\(\sin \widehat B = \cos \widehat A = \frac{3}{5};\cos \widehat B = \sin \widehat A = \frac{4}{5}\)
\(\tan \widehat B = \cot \widehat A = \frac{3}{4};\cot \widehat B = \tan \widehat A = \frac{4}{3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!