Câu hỏi:
11/07/2024 177
Cho hàm số y = 2x – 3 có đồ thị (d) và điểm A(–1; –5).
a) Viết phương trình đường thẳng d1 qua A và song song với trục Ox .
b) Viết phương trình đường thẳng d2 qua A và song song với đường thẳng d.
c) Viết phương trình đường thẳng d3 qua A và vuông góc với đường thẳng d.
d) Viết phương trình đường thẳng d4 qua A và gốc tọa độ.
Cho hàm số y = 2x – 3 có đồ thị (d) và điểm A(–1; –5).
a) Viết phương trình đường thẳng d1 qua A và song song với trục Ox .
b) Viết phương trình đường thẳng d2 qua A và song song với đường thẳng d.
c) Viết phương trình đường thẳng d3 qua A và vuông góc với đường thẳng d.
d) Viết phương trình đường thẳng d4 qua A và gốc tọa độ.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
Gọi các đường thẳng có công thức chung là y = ax + b.
a. Đường thẳng d1 qua A và song song với trục Ox
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - a + b = - 5}\\{a = 0;b \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = - 5}\end{array}} \right. \Leftrightarrow \left( {{d_1}} \right):y = - 5\)
b. Đường thẳng d2 qua A và song song với đường thẳng d
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - a + b = 5}\\{a = 2;b \ne - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 7}\end{array}} \right. \Leftrightarrow y = 2x + 7\)
c. Đường thẳng d3 qua A và vuông góc với đường thẳng d
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - a + b = 5}\\{2a = - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 2}\\{b = 3}\end{array}} \right. \Leftrightarrow \left( {{d_3}} \right):y = - 2x + 3\)
d. Đường thẳng d4 qua A và gốc tọa độ
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - a + b = 5}\\{b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 5}\\{b = 0}\end{array}} \right. \Leftrightarrow \left( {{d_4}} \right):y = - 5x\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) ABCD là hình thang cân
\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)
\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)
⇒ ΔODC cân tại O ⇒ OC = OD
Mà AD = BC (ABCD là hình thang cân) ⇒ OA = OB ⇒ ΔOAB cân tại O
b) ABCD là hình thang cân
\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)
Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)
c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)
⇒ ΔDEC cân tại E
d) EC = ED
Mà AC = BD (ABCD là hình thang cân)
⇒ EA = EB
Lại có OA = OB
⇒ OE là đường trung trực AB
OD = OC; EC = ED
⇒ OE là đường trung trực CD.
Lời giải
Lời giải:
Theo hệ quả của định lí côsin ta có:
\[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2}\]
\( \Rightarrow \widehat A = 60^\circ \).
Diện tích tam giác ABC là \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin 60^\circ = 10\sqrt 3 \).
Vì \(S = \frac{1}{2}a{h_a}\) nên \({h_a} = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7}\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7.8.5}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.