Câu hỏi:
12/07/2024 2,322Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo. Gọi M, N là trung điểm của OB, OD.
a) Chứng minh AMCN là hình bình hành.
b) AM cắt BC tại E, CN cắt AD tại F. Chứng minh AE = CF và O, E, F thẳng hàng.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a) Vì O là giao điểm 2 đường chéo của hình bình hành ABCD nên OB = OD.
Mà M, N lần lượt là trung điểm OB, OD nên OM = ON
Mà O là giao điểm 2 đường chéo của hình bình hành ABCD nên OA = OC
Do đó AMCN là hình bình hành (do O là trung điểm AC và MN).
b) Vì AMCN là hình bình hành nên AM // CN hay AE // CF
Mà ABCD là hình bình hành nên AD // BC hay AF // CE
Do đó AECF là hình bình hành nên AE = CF.
Do AECF là hình bình hành mà O là trung điểm của đường chéo AC nên O cũng là trung điểm của đường chéo EF.
Vậy O; E; F thẳng hàng.
Đã bán 386
Đã bán 1,3k
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.
Câu 5:
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận