Câu hỏi:
12/07/2024 1,739Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Đặt \(B = {5^{2n - 1}}{.2^{n + 1}} + {3^{n + 1}}{.2^{2n - 1}}\,\).
Với n = 1, ta có B = 5 . 4 + 9 . 2 = 38 chia hết cho 38 hay B ⁝ 38.
Giả sử B ⁝ 38 khi n = k, ta cần chứng minh B ⁝ 38 khi n = k + 1.
Đặt \(a = {5^{2k - 1}}{.2^{k + 1}};b = {3^{k + 1}}{.2^{2k - 1}}\)
Ta có: a + b = 38c, c nguyên
Với n = k + 1 thì B = 50a + 12b = 38a + 12(a + b)
Mà 38a ⁝ 38 và a + b ⁝ 38
Suy ra 12(a + b) ⁝ 38
⇒ B ⁝ 38 (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!