Câu hỏi:
13/05/2023 275Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Dễ dàng thấy (1) là phương trình vi phân tách biến
\(\left( 1 \right) \Leftrightarrow \frac{{xdx}}{{1 + {x^2}}} = - \frac{{ydy}}{{1 + {y^2}}}\)
Lấy tích phân 2 về ta được: \(\int {\frac{{xdx}}{{1 + {x^2}}}} = - \int {\frac{{ydy}}{{1 + {y^2}}}} \Rightarrow \frac{1}{2}\int {\frac{{d\left( {1 + {x^2}} \right)}}{{1 + {x^2}}}} = - \frac{1}{2}\int {\frac{{d\left( {1 + {y^2}} \right)}}{{1 + {y^2}}}} \)
\( \Rightarrow \ln \left( {1 + {x^2}} \right) = - \ln \left( {1 + {y^2}} \right) + {C_1} \Rightarrow \ln \left( {1 + {x^2}} \right) + \ln \left( {1 + {y^2}} \right) = \ln C,\left( {\ln C = {C_1}} \right)\)
\( \Rightarrow \ln \left[ {\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)} \right] = \ln C \Rightarrow \left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right) = C\)
Vậy nghiệm tổng quát của PT là \(\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right) = C\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!