Câu hỏi:
12/07/2024 2,068
Cho biểu thức \(P = {\sin ^{10}}x + {\cos ^{10}}x\). Hãy viết P về dạng đa thức theo cos2x. Từ đó hãy giải phương trình \(P = \frac{1}{{16}}\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
+) Ta có: \({\sin ^2}x = \frac{{1 - \cos 2x}}{2};{\cos ^2}x = \frac{{1 + \cos 2x}}{2}\)
\(P = {\sin ^{10}}x + {\cos ^{10}}x\)
\( = {\left( {{{\sin }^2}x} \right)^5} + {\left( {{{\cos }^2}x} \right)^5}\)
\( = \frac{{{{\left( {1 - \cos 2x} \right)}^5} + {{\left( {1 + \cos 2x} \right)}^5}}}{{{2^5}}}\)
\( = \frac{{\left( {1 - 5\cos 2x} \right) + 10{{\cos }^2}2x - 10{{\cos }^3}2x + 5{{\cos }^4}2x - {{\cos }^5}2x + \left( {1 + 5\cos 2x} \right) + 10{{\cos }^2}2x + 10{{\cos }^3}2x + 5{{\cos }^4}2x + {{\cos }^5}2x}}{{32}}\)
\( = \frac{{2 + 20{{\cos }^2}2x + 10{{\cos }^4}2x}}{{32}}\)
\( = \frac{5}{{16}}{\cos ^4}2x + \frac{5}{8}{\cos ^2}2x + \frac{1}{{16}}\)
+) \(P = \frac{1}{{16}} \Leftrightarrow \frac{5}{{16}}{\cos ^4}2x + \frac{5}{8}{\cos ^2}2x = 0\)
\( \Leftrightarrow \frac{5}{{16}}{\cos ^2}2x\left( {{{\cos }^2}2x + 2} \right) = 0\)
⇔ cos2x = 0 (do cos22x + 2 > 0)
⇔ \(2x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) ABCD là hình thang cân
\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)
\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)
⇒ ΔODC cân tại O ⇒ OC = OD
Mà AD = BC (ABCD là hình thang cân) ⇒ OA = OB ⇒ ΔOAB cân tại O
b) ABCD là hình thang cân
\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)
Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)
c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)
⇒ ΔDEC cân tại E
d) EC = ED
Mà AC = BD (ABCD là hình thang cân)
⇒ EA = EB
Lại có OA = OB
⇒ OE là đường trung trực AB
OD = OC; EC = ED
⇒ OE là đường trung trực CD.
Lời giải
Lời giải:
Theo hệ quả của định lí côsin ta có:
\[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2}\]
\( \Rightarrow \widehat A = 60^\circ \).
Diện tích tam giác ABC là \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin 60^\circ = 10\sqrt 3 \).
Vì \(S = \frac{1}{2}a{h_a}\) nên \({h_a} = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7}\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7.8.5}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.