Câu hỏi:
12/07/2024 1,484Cho ∆ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D.
a. Chứng minh tứ giác BDCH là hình bình hành.
b) Tính số đo góc \(\widehat {BDC}\) biết \(\widehat {BAC}\) = 60°.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a. Ta có: BH vuông góc với AC (do H là trực tâm) và CD vuông góc với AC (gt).
Suy ra BH // CD.
Tương tự ta chứng minh được CH // BD.
Khi đó tứ giác BHCD có các cặp cạnh đối song song nên nó là hình bình hành.
b. Tứ giác ABCD có \(\widehat {ABD} = \widehat {ACD} = 90^\circ \) (gt).
Mà \(\widehat {BAC} = 60^\circ \).
Do đó, \(\widehat {BDC} = 360^\circ - \left( {90^\circ .2 + 60^\circ } \right) = 120^\circ \).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!