Câu hỏi:

11/07/2024 3,001

Tìm số tư nhiên n dương để số \({n^{2021}} + {n^{2020}} + 1\) một số nguyên tố.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

\({n^{2021}} + {n^{2020}} + 1 = {n^{2021}} - {n^2} + {n^{2020}} - n + {n^2} + n + 1\)

\( = {n^2}\left( {{n^{2019}} - 1} \right) + n\left( {{n^{2019}} - 1} \right) + \left( {{n^2} + n + 1} \right) = \left( {{n^2} + n} \right)\left( {{n^{2019}} - 1} \right) + \left( {{n^2} + n + 1} \right)\)

\( = n\left( {n + 1} \right)\left( {{n^{2019}} - 1} \right) + \left( {{n^2} + n + 1} \right)\left( 1 \right)\)

Để ý rằng, 2019 \( \vdots \) 3 và 2019 = 3 x 673. Nên nếu ta đặt A = \({n^3}\)thì \({n^{2019}} = {A^{673}}\)

Mặt khác, áp dụng hằng đẳng thức sau:

\({a^k} - {b^k} = \left( {a - b} \right)\left( {{a^{k - 1}} + {a^{k - 2}}b + {a^{k - 3}}{b^2} + ... + {a^2}{b^{k - 2}} + {b^{k - 1}}} \right)\)

Ta có \({n^{2019}} - 1 = {A^{673}} - 1 = {A^{673}} - 1 = \left( {A - 1} \right)\left( {{A^{672}} + {A^{671}} + ... + {A^1} + 1} \right)\)

Vậy suy ra \({n^{2019}} - 1 \vdots \left( {A - 1} \right)\)hay \({n^{2019}} - 1 \vdots \left( {{n^3} - 1} \right)\)

Mà \({n^3} - 1 = \left( {n - 1} \right)\left( {{n^2} + n + 1} \right) \Rightarrow \left( {{n^{2019}} - 1} \right) \vdots \left( {{n^2} + n + 1} \right)\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow \left( {{n^{2021}} + {n^{2020}} + 1} \right) \vdots \left( {{n^2} + n + 1} \right)\)

Như vậy để \({n^{2021}} + {n^{2020}} + 1\) là số nguyên tố thì có 2 trường hợp:

(1) \({n^2} + n + 1 = 1\), trường hợp này không xảy ra do n > 0 (gt)

(2) \({n^{2021}} + {n^{2020}} + 1 = {n^2} + n + 1\) hay \({n^{2020}}\left( {n + 1} \right) = n\left( {n + 1} \right)\)

\( \Rightarrow n\left( {n + 1} \right)\left( {{n^{2019}} - 1} \right) = 0\), do n > 0 nên \({n^{2019}} - 1 = 0\) hay n = 1

Thử lại ta có \({n^{2021}} + {n^{2020}} + 1 = {1^{2021}} + {1^{2020}} + 1 = 3\) là số nguyên tố.

Vậy n = 1 là đáp án cần tìm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Media VietJack

a) ABCD là hình thang cân 

\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)

\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)

ΔODC cân tại O OC = OD

Mà AD = BC (ABCD là hình thang cân) OA = OB ΔOAB cân tại O

b) ABCD là hình thang cân

\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)

Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)

c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)

Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)

ΔDEC cân tại E

d) EC = ED

Mà AC = BD (ABCD là hình thang cân)

EA = EB

Lại có OA = OB

OE là đường trung trực AB

OD = OC; EC = ED

OE là đường trung trực CD.

Lời giải

Lời giải:

Media VietJack

Theo hệ quả của định lí côsin ta có:

\[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2}\]

 \( \Rightarrow \widehat A = 60^\circ \).

Diện tích tam giác ABC là \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin 60^\circ = 10\sqrt 3 \).

Vì \(S = \frac{1}{2}a{h_a}\) nên \({h_a} = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7}\)

Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7.8.5}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay