Câu hỏi:

12/07/2024 10,058

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc (ABCD) và SA = 2a.

a) Chứng minh (SCD) vuông góc (SAD).

b) Tính d(A, (SCD)).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì SA (ABCD) nên SA CD

Vì ABCD là hình vuông nên CD AD

Suy ra CD (SAD)

Mà CD  (SCD)

Suy ra (SCD) (SAD).

b) Kẻ AH SD

Mà CD (SAD) nên CD AH

Ta có \(\left\{ \begin{array}{l}AH \bot S{\rm{D}}\\AH \bot C{\rm{D}}\end{array} \right.\)

Suy ra AH (SCD)

Do đó d(A, (SCD)) = AH 

Vì tam giác SAD vuông tại A nên theo định lí Pytago ta có

\[{\rm{SD}} = \sqrt {{\rm{A}}{{\rm{D}}^2} + S{A^2}} = \sqrt {{a^2} + {{\left( {{\rm{2a}}} \right)}^2}} = a\sqrt 5 \]

Vì tam giác SAD vuông tại A có AH SD

Suy ra AH . SD = SA . AD

Do đó \[{\rm{A}}H = \frac{{SA.A{\rm{D}}}}{{S{\rm{D}}}} = \frac{{2a.a}}{{a\sqrt 5 }} = \frac{{2{\rm{a}}}}{{\sqrt 5 }}\]

Vậy \[d\left( {A,\left( {SC{\rm{D}}} \right)} \right) = \frac{{2{\rm{a}}}}{{\sqrt 5 }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C

Suy ra AC = CM và OC là tia phân giác của \(\widehat {AOM}\)

Do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}\)

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D

Suy ra BD = DM và OD là tia phân giác của \(\widehat {BOM}\)

Do đó \(\widehat {BOD} = \widehat {DOM} = \frac{1}{2}\widehat {BOM}\)

Ta có \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)

Vậy tam giác COD vuông tại O.

b) Xét tam giác COD vuông tại O có OM CD, theo hệ thức lượng trong tam giác vuông ta có: OM2 = CM . DM

Mà CM = AC, DM = BD (chứng minh câu a)

Suy ra AC . BD = R2.

c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại O, suy ra BM DO

Mà OC DO (chứng minh câu a)

Do đó OC // BM (quan hệ từ vuông góc đến song song)

Xét tam giác ABK có

O là trung điểm của AB; OC // BM

Suy ra C là trung điểm của AK

Do đó CA = CK

Ta có CA AB, MH AB nên CA // MH (quan hệ từ vuông góc đến song song)

Suy ra \(\frac{{MI}}{{CK}} = \frac{{BI}}{{BC}} = \frac{{IH}}{{AC}}\)

Mà CA = CK, suy ra MI = IH

Do đó I là trung điểm của MH

Vậy BC đi qua trung điểm của đoạn MH.

Lời giải

Lời giải

Media VietJack

Xét tam giác SAB có M, N là trung điểm SA, SB

Suy ra MN là đường trung bình

Do đó MN // AB

Mà AB // DC (vì ABCD là hình bình hành)

Suy ra MN // CD

Xét (MNP) và (SDC) có P là điểm chungMN // CD (chứng minh trên)

Suy ra giao tuyến qua P song song với MN, giao với SD tại Q

Do đó SD ∩ (MNP) = PQ.