🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Lời giải

Điều kiện để hai hàm số là hàm số bậc nhất: m ≠ 0, \(m \ne \frac{{ - 1}}{2}\).

a) Hai đường thẳng đã cho là hai đường thẳng song song

\( \Leftrightarrow \left\{ \begin{array}{l}m = 2m + 1\\3 \ne - 5\end{array} \right. \Leftrightarrow m = - 1\) (thỏa mãn)

Vậy m = – 1.

b) Hai đường thẳng đã cho là hai đường thẳng cắt nhau

m ≠ 2m + 1

m ≠ – 1

Vậy m ≠ 0, \(m \ne \frac{{ - 1}}{2}\), m ≠ – 1.

Lời giải

Lời giải

Media VietJack

Xét ∆AHB vuông tại H có đường cao MH, theo hệ thức lượng trong tam giác vuông ta có: MH2 = MB . MA

Do đó \(MH = \sqrt {8.2} = \sqrt {16} = 4\)(cm)

Áp dụng định lý Py−ta−go vào ∆AMH vuông tại M, ta có:

\[{\rm{A}}H = \sqrt {A{M^2} + M{H^2}} = \sqrt {{8^2} + {4^2}} = 4\sqrt 5 \] (cm)

Vậy \(AH = 4\sqrt 5 \) cm; MH = 4 cm.

Lời giải

Lời giải

Gọi a, b là 2 số nguyên dương thỏa mãn thuộc (1; m) với b > a

Suy ra a, b thỏa mãn 1 < a < b < m

Để (1; m) có đúng 2 số nguyên dương thì a, b là 2 và 3; nên m (3; 4]

Vậy m (3; 4].

Lời giải

Lời giải

a) Với x = 0 thì y = 3.

Với x = – 1 thì y = 1.

Þ Đồ thị hàm số đi qua 2 điểm (0; 3) và (– 1; 1).

Media VietJack

b) Do A và B lần lượt là giao điểm của đồ thị hàm số y = 2x + 3 lần lượt với trục tung và trục hoành, ta gọi A(0; a) và B(b; 0)

Vì A, B cùng thuộc đường thẳng y = 2x + 3

Nên \(\left\{ \begin{array}{l}a = 2.0 + 3\\0 = 2b + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{3}{2}\end{array} \right.\)

Suy ra A( 0; 3) và \(B\left( {\frac{{ - 3}}{2};0} \right)\).

c) Vì A, B nằm trên trục tung và trục hoành nên OA OB.

Suy ra \[{{\rm{S}}_{OAB}} = \frac{{OA.OB}}{2} = \frac{{3.\frac{3}{2}}}{2} = \frac{9}{4}\] (cm2)

c) Giao điểm của đồ thị hàm số y = ax + b với trục tung là C(0; b), với trục hoành là \[{\rm{D}}\left( {\frac{{ - b}}{a};0} \right)\].

Suy ra \[{\rm{O}}A = \left| b \right|,OB = \left| {\frac{{ - b}}{a}} \right|\]

+) Nếu a > 0 thì góc tạo bởi đường thẳng y = ax + b với trục Ox là góc nhọn

\[\tan \alpha = \frac{{OA}}{{OB}} = \frac{{\left| a \right|}}{{\left| {\frac{{ - b}}{a}} \right|}} = \left| a \right| = a\]

+) Nếu a < 0 thì góc tạo bởi đường thẳng y = ax + b với trục Ox là góc tù

\[\tan \left( {180^\circ - \alpha } \right) = \frac{{OA}}{{OB}} = \frac{{\left| a \right|}}{{\left| {\frac{{ - b}}{a}} \right|}} = \left| a \right| = - a\]

Lời giải

Lời giải

Điều kiện xác định x ≠ 0.

Ta có \(y = - \frac{1}{x}\)

Suy ra \(y' = \frac{1}{{{x^2}}} > 0\) với mọi x ≠ 0

Vậy y đồng biến trên (– ∞; 0) và (0; + ∞).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 12

Nghiệm của phương trình sin2x + cosx = 0 là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 22

Cho các tập hợp A = (–2; 10), B = (m; m + 2). Tìm m để tập hơp A ∩ B là một khoảng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 38

Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, AD = 2a; cạnh bên SA = a và vuông góc với đáy. Tính khoảng cách d từ A tới mặt phẳng (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 39

Giải phương trình \(2{\sin ^2}x + \sqrt 3 \sin 2{\rm{x}} = 3\) được nghiệm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

11967 Đánh giá

50%

40%

0%

0%

0%