Câu hỏi:
12/07/2024 1,653
Giải phương trình: \(\frac{1}{{\sin 2{\rm{x}}}} + \frac{1}{{cos2{\rm{x}}}} = \frac{2}{{\sin 4{\rm{x}}}}\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Điều kiện xác định \(\left\{ \begin{array}{l}\sin 2{\rm{x}} \ne 0\\cos2{\rm{x}} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{\rm{x}} \ne k\pi \\2{\rm{x}} \ne \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}} \ne \frac{{k\pi }}{2}\\{\rm{x}} \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\end{array} \right.\)
Ta có \(\frac{1}{{\sin 2{\rm{x}}}} + \frac{1}{{cos2{\rm{x}}}} = \frac{2}{{\sin 4{\rm{x}}}}\)
Þ 2cos2x + 2sin2x = 2
⇔ cos2x + sin2x = 1
⇔ 1 – 2sin2x + 2sinxcosx – 1 = 0
⇔ – 2sinx(sinx – cosx) = 0
⇔ sinx – cosx = 0 (do sin2x ≠ 0 nên sinx ≠ 0)
Û sinx = cosx
\( \Leftrightarrow \sin x = \sin \left( {\frac{\pi }{2} - x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} - x + k2\pi \\x = \pi - \frac{\pi }{2} + x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{2} + k2\pi \\0x = \pi - \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\)
Kết hợp điều kiện ta được: x ∈ ∅.
Vậy \(x \in \left\{ {k\pi ;\frac{\pi }{4} + k\pi } \right\}\) với k ∈ Z.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C
Suy ra AC = CM và OC là tia phân giác của \(\widehat {AOM}\)
Do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}\)
Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D
Suy ra BD = DM và OD là tia phân giác của \(\widehat {BOM}\)
Do đó \(\widehat {BOD} = \widehat {DOM} = \frac{1}{2}\widehat {BOM}\)
Ta có \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)
Vậy tam giác COD vuông tại O.
b) Xét tam giác COD vuông tại O có OM ⊥ CD, theo hệ thức lượng trong tam giác vuông ta có: OM2 = CM . DM
Mà CM = AC, DM = BD (chứng minh câu a)
Suy ra AC . BD = R2.
c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC
Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại O, suy ra BM ⊥ DO
Mà OC ⊥ DO (chứng minh câu a)
Do đó OC // BM (quan hệ từ vuông góc đến song song)
Xét tam giác ABK có
O là trung điểm của AB; OC // BM
Suy ra C là trung điểm của AK
Do đó CA = CK
Ta có CA ⊥ AB, MH ⊥ AB nên CA // MH (quan hệ từ vuông góc đến song song)
Suy ra \(\frac{{MI}}{{CK}} = \frac{{BI}}{{BC}} = \frac{{IH}}{{AC}}\)
Mà CA = CK, suy ra MI = IH
Do đó I là trung điểm của MH
Vậy BC đi qua trung điểm của đoạn MH.
Lời giải
Lời giải
Xét tam giác SAB có M, N là trung điểm SA, SB
Suy ra MN là đường trung bình
Do đó MN // AB
Mà AB // DC (vì ABCD là hình bình hành)
Suy ra MN // CD
Xét (MNP) và (SDC) có P là điểm chung và MN // CD (chứng minh trên)
Suy ra giao tuyến qua P song song với MN, giao với SD tại Q
Do đó SD ∩ (MNP) = PQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.