Câu hỏi:

12/07/2024 21,412

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Tìm giao điểm Q của SD và (MNP).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Xét tam giác SAB có M, N là trung điểm SA, SB

Suy ra MN là đường trung bình

Do đó MN // AB

Mà AB // DC (vì ABCD là hình bình hành)

Suy ra MN // CD

Xét (MNP) và (SDC) có P là điểm chungMN // CD (chứng minh trên)

Suy ra giao tuyến qua P song song với MN, giao với SD tại Q

Do đó SD ∩ (MNP) = PQ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C

Suy ra AC = CM và OC là tia phân giác của \(\widehat {AOM}\)

Do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}\)

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D

Suy ra BD = DM và OD là tia phân giác của \(\widehat {BOM}\)

Do đó \(\widehat {BOD} = \widehat {DOM} = \frac{1}{2}\widehat {BOM}\)

Ta có \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)

Vậy tam giác COD vuông tại O.

b) Xét tam giác COD vuông tại O có OM CD, theo hệ thức lượng trong tam giác vuông ta có: OM2 = CM . DM

Mà CM = AC, DM = BD (chứng minh câu a)

Suy ra AC . BD = R2.

c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại O, suy ra BM DO

Mà OC DO (chứng minh câu a)

Do đó OC // BM (quan hệ từ vuông góc đến song song)

Xét tam giác ABK có

O là trung điểm của AB; OC // BM

Suy ra C là trung điểm của AK

Do đó CA = CK

Ta có CA AB, MH AB nên CA // MH (quan hệ từ vuông góc đến song song)

Suy ra \(\frac{{MI}}{{CK}} = \frac{{BI}}{{BC}} = \frac{{IH}}{{AC}}\)

Mà CA = CK, suy ra MI = IH

Do đó I là trung điểm của MH

Vậy BC đi qua trung điểm của đoạn MH.

Lời giải

Lời giải

Media VietJack

a) Vì HM AB, HN AC

Nên \(\widehat {HMA} = \widehat {HNA} = 90^\circ \)

Xét tứ giác AMHN có

\(\widehat {HMA} + \widehat {HNA} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác AMHN nội tiếp đường tròn đường kính AH

b) Dựng Ax là tiếp tuyến của (O) nên Ax AE

Xét (O) có \(\widehat {xAB},\widehat {ACB}\) là góc tạo bởi tiếp tuyến và dây cung, góc nội tiếp cũng chắn cung AB

Suy ra \(\widehat {xAB} = \widehat {ACB}\)                             (1)

Vì tam giác HNC vuông ở N nên \(\widehat {NHC} + \widehat {NCH} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {NHC} + \widehat {NHA} = \widehat {AHC} = 90^\circ \)

Suy ra \(\widehat {AHN} = \widehat {NCH}\)                            (2)

Xét đường tròn đường kính AH có \(\widehat {AMN},\widehat {AHN}\) là hai góc nội tiếp chắn cung AN

Suy ra \(\widehat {AMN} = \widehat {AHN}\)                           (3)

Từ (1), (2) và (3) suy ra \(\widehat {xAB} = \widehat {AMN}\)

Mà hai góc này ở vị trí so le trong

Suy ra Ax // MN

Mà Ax AE

Do đó MN AE

c) Vì tam giác ACE nội tiếp (O) đường kính AE

Nên tam giác ACE vuông ở C

Hay \(\widehat {AC{\rm{E}}} = 90^\circ \)

Xét tam giác AHC vuông ở H có HN AC nên AC . AN = AH2 (hệ thức lượng trong tam giác vuông)

Xét AIN và ACE có

\(\widehat {CA{\rm{E}}}\) là góc chung

\(\widehat {AIN} = \widehat {AC{\rm{E}}}\left( { = 90^\circ } \right)\)

Do đó  (g.g)

Suy ra \(\frac{{AI}}{{AC}} = \frac{{AN}}{{A{\rm{E}}}}\)

Do đó AI . AE = AC . AN = AH2

Vì tam giác AKE nội tiếp (O) đường kính AE

Nên tam giác AKE vuông ở K

Lại có KI AE

Nên AK2 = AI . AE (hệ thức lượng trong tam giác vuông)

AI . AE = AH2 (chứng minh trên)

Suy ra AH = AK

Vậy AH = AK.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay