200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P1)

26 người thi tuần này 5.0 14.9 K lượt thi 25 câu hỏi 25 phút

Chia sẻ đề thi

hoặc tải đề

In đề / Tải về
Thi thử

Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

A. 6x + 3y - 2z - 6 = 0

B. x + 2y + 3z - 14 = 0

C. x + 3y + 2z - 11 = 0

D.x1+y2+z3=3

Chọn B

Gọi A (a; 0; 0), B(0; b; 0) và C(0; 0; c) với abc ≠ 0. Phương trình mặt phẳng (P) đi qua ba điểm A, B, C 

.

Vì M(1;2;3) ∈ (P) nên ta có: .

Điểm M là trực tâm của tam giác ABC.


Phương trình mặt phẳng (P) là:  <=> x + 2y + 3z - 14 = 0

🔥 Đề thi HOT:

1809 người thi tuần này

5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)

53.3 K lượt thi 126 câu hỏi
1057 người thi tuần này

80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)

11.4 K lượt thi 20 câu hỏi
986 người thi tuần này

80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)

12.5 K lượt thi 20 câu hỏi
946 người thi tuần này

15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)

8.7 K lượt thi 15 câu hỏi
882 người thi tuần này

62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)

10.3 K lượt thi 19 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1:

Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

Xem đáp án

Câu 2:

Trong không gian Oxyz, cho ba điểm A(0;0;-1), B(-1;1;0), C(1;0;1). Tìm điểm M sao cho 3MA+ 2MB- MC2 đạt giá trị nhỏ nhất.

Xem đáp án

Câu 12:

Một khối đa diện  được tạo thành bằng cách từ một khối lập phương cạnh bằng 3, ta bỏ đi khối lập phương cạnh bằng 1 ở một “góc” của nó như hình vẽ.

 

Gọi S là khối cầu có thể tích lớn nhất chứa trong H và tiếp xúc với các mặt phẳng (A'B'C'D'), (BCC'B') và (DCC'D'). Tính bán kính của S.

Xem đáp án

Câu 14:

Cho hình chóp S.ABCD có cạnh bằng bên bằng nhau và bằng 2a, đáy là hình chữ nhật ABCD có AB = 2a, AD = a. Gọi K là điểm thuộc BC sao cho 3BK+2CK=0 . Tính khoảng cách giữa hai đường thẳng AD và SK.

Xem đáp án

Câu 15:

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;0;-3), B(-3;-2;-5). Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức AMBM2 = 30 là một mặt cầu (S). Tọa độ tâm I và bán kính R của mặt cầu (S) là:

Xem đáp án

Câu 21:

Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy điểm M thuộc đoạn AD', điểm N thuộc đoạn BD sao cho AM = DN = x, (0 < x < a√2/2). Tìm x theo a để đoạn MN ngắn nhất.

Xem đáp án

Câu 24:

Trong không gian Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d: x+12=y-52=z-1. Tìm vectơ chỉ phương u  của đường thẳng Δ đi qua điểm A và vuông góc với d đồng thời cách B một khoảng lớn nhất.

Xem đáp án

Câu 25:

Trong không gian Oxyz, cho điểm A(1;0;-1), mặt phẳng (P): x + y - z - 3 = 0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + √2. Phương trình mặt cầu (S) là:

Xem đáp án

5.0

1 Đánh giá

100%

0%

0%

0%

0%