Câu hỏi:

02/02/2021 20,565

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(2;1;3), B(1;-1;2), C(3;-6;1). Điểm M(x;y;z) thuộc mặt phẳng (Oyz) sao cho MAMBMC2 đạt giá trị nhỏ nhất. Tính giá trị của biểu thức P = x+y+z

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Gọi G là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)

Do tổng GAGBGC2 không đổi nên MAMBMC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất

Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)

Vậy P = x+y+z = 0 + (-2) + 2 = 0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Gọi A (a; 0; 0), B(0; b; 0) và C(0; 0; c) với abc ≠ 0. Phương trình mặt phẳng (P) đi qua ba điểm A, B, C 

.

Vì M(1;2;3) ∈ (P) nên ta có: .

Điểm M là trực tâm của tam giác ABC.


Phương trình mặt phẳng (P) là:  <=> x + 2y + 3z - 14 = 0

Lời giải

Chọn D

Cách 1: Giả sử

Cách 2: Ta có:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP