Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(2;1;3), B(1;-1;2), C(3;-6;1). Điểm M(x;y;z) thuộc mặt phẳng (Oyz) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất. Tính giá trị của biểu thức P = x+y+z
A. P = 0
B. P = 2P = 0
C. P = 6
D. P = -2
Quảng cáo
Trả lời:
Chọn A
Gọi G là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)
Do tổng GA2 + GB2 + GC2 không đổi nên MA2 + MB2 + MC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất
Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)
Vậy P = x+y+z = 0 + (-2) + 2 = 0
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 6x + 3y - 2z - 6 = 0
B. x + 2y + 3z - 14 = 0
C. x + 3y + 2z - 11 = 0
Lời giải
Chọn B
Gọi A (a; 0; 0), B(0; b; 0) và C(0; 0; c) với abc ≠ 0. Phương trình mặt phẳng (P) đi qua ba điểm A, B, C là
.
Vì M(1;2;3) ∈ (P) nên ta có: .
Điểm M là trực tâm của tam giác ABC.
Phương trình mặt phẳng (P) là: <=> x + 2y + 3z - 14 = 0
Lời giải
Chọn D
Cách 1: Giả sử
Cách 2: Ta có:
Câu 3
A. a+b+c=6
B. a+b+c=5
C. a+b+c=8
D. a+b+c=7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 2x + y + z - 6 = 0
B. x + 2y + z - 6 = 0
C. x + 2y + 2z - 6 = 0
D. 2x + y + z + 6 = 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. M (0;1;-4)
B. M (2;1;0)
C. M (0;1;-2)
D. M (0;1;4)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.