Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
13909 lượt thi câu hỏi 25 phút
5418 lượt thi
Thi ngay
3009 lượt thi
3711 lượt thi
853 lượt thi
4395 lượt thi
2596 lượt thi
5024 lượt thi
3222 lượt thi
2703 lượt thi
2734 lượt thi
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 1; 2), B (-1; 0; 4), C (0; -1; 3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z - 1)2 = 1. Khi biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng:
A. 2
B. 6
C. 6
D. 2
Trong không gian Oxyz, cho hai điểm A (1; 2; 1), B (2; -1; 3). Tìm điểm M trên mặt phẳng (Oxy) sao cho MA2-2MB2 lớn nhất.
A. M32;12;0
B. M12;-32;0
C. M (0; 0; 5)
D. M (3; -4; 0)
Câu 2:
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A'C, N ∈ BC') là đường vuông góc chung của A'C và BC'. Tỷ số NB/NC' bằng:
A.5/2
B. 3/2
C. 2/3
D. 1
Câu 3:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + y -2z + m = 0 và mặt cầu (S): x2 + y2 + z2 - 2x + 4y -6z - 2= 0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4π√3
A. 3
B. 4
C. 2
Câu 4:
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + (y+3)2 + (z - 7)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Câu 5:
Trong không gian với hệ trục Oxyz, cho hai điểm M (1; 2; 1); N (-1; 0; -1). Có bao nhiêu mặt phẳng (P) qua M, N cắt trục Ox, trục Oy lần lượt tại A, B (A ≠ B) sao cho AM = √3BN
A. 1
B. 2
C. 3
D. Vô số.
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-2; 2; -2); B(3; -3; 3). Điểm M trong không gian thỏa mãn MA/MB = 2/3. Khi đó độ dài OM lớn nhất bằng:
A. 63
B. 123
C. 532
D. 53
Câu 7:
Trong không gian Oxyz, cho đường thẳng d: x+11=y+32=z+22và điểm A(3;2;0). Điểm đối xứng của điểm A qua đường thẳng d có tọa độ là:
A. (-1; 0; 4)
B. (7; 1; -1)
C. (2; 1; -2)
D. (0; 2; -5)
Câu 8:
Trong không gian Oxyz cho ba điểm A (1; 2; 3), B (1; 0; -1), C (2; -1; 2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng 33010 có tọa độ là:
A. (0; 0 ; 1)
B. (0; 0 ; 3)
C. (0; 0 ; 2)
D. (0; 0 ; 4)
Câu 9:
Trong không gian Oxyz, cho ba điểm A (-1; 0; 1), B (3; 2; 1), C (5; 3; 7). Gọi M (a; b; c) là điểm thỏa mãn MA = MB và MB + MC đạt giá trị nhỏ nhất. Tính P = a + b + c
A. P = 4
B. P = 0
C. P = 2
D. P = 5
Câu 10:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x+12=y1=z-21 , mặt phẳng (P): x + y - 2z + 5 = 0 và A (1; -1; 2). Đường thẳng Δ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN. Một vectơ chỉ phương của Δ là:
A.u→=2;3;2
B.u→=1;-1;2
C.u→=-3;5;1
D.u→=4;5;-13
Câu 11:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (0; 2; 2), B (2; -2; 0). Gọi I1 (1; 1; -1) và I2 (3; 1; 1) là tâm của hai đường tròn nằm trên hai mặt phẳng khác nhau và có chung một dây cung AB. Biết rằng luôn có một mặt cầu (S) đi qua cả hai đường tròn ấy. Tính bán kính R của (S).
A. R=2193
B. R = 22
C. R=1293
D. R = 26
Câu 12:
Trong không gian Oxyz, cho ba đường thẳng d1:x-32=y+11=z-2-2 , d2:x+13=y-2=z+4-1và d3:x+34=y-2-1=z6.Đường thẳng song song d3, cắt d2 và d1 có phương trình là:
A.x-34=y+11=z-26
B. x-3-4=y+11=z-2-6
C.x+14=y-1=z-46
D.x-14=y-1=z+46
Câu 13:
Trong không gian Oxyz, cho ba điểm A (3; 0; 0), B (1; 2; 1) và C (2; -1; 2). Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10; a; b). Tổng a + b là:
A. -2
C. 1
D. -1
Câu 14:
Trong không gian Oxyz cho hai đường thẳng∆1:x=1y=2+tz=-t,∆2:x=4+ty=3-2tz=1-t.Gọi (S) là mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng Δ1 và Δ2. Bán kính mặt cầu (S).
A.102
B. 112
C. 3/2
Câu 15:
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (3; 4; 5) và mặt phẳng (P): x - y + 2z - 3 = 0. Hình chiếu vuông góc của điểm M lên mặt phẳng (P) là:
A. H (1; 2; 2)
B. H (2; 5; 3)
C. H (6; 7; 8)
D. H (2; -3; -1)
Câu 16:
Cho khối cầu tâm O bán kính 6 cm. Mặt phẳng (P) cách O một khoảng x cắt khối cầu theo một hình tròn (C). Một khối nón có đỉnh thuộc mặt cầu, đáy là hình tròn (C). Biết khối nón có thể tích lớn nhất, giá trị của x bằng:
A. 2 cm.
B. 3 cm.
C. 4 cm.
D. 0 cm.
Câu 17:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x-22=y-1=z4 và mặt cầu S: x-12+y-22+z-12=2 . Hai mặt phẳng (P), (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Độ dài đoạn thẳng MN bằng?
A. 22
B. 433
C. 233
D. 4
Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + y + 6z -1 = 0 và hai điểm A (1; -1; 0), B (-1; 0; 1). Hình chiếu vuông góc của đoạn thẳng AB trên mặt phẳng (P) có độ dài bao nhiêu?
A. 25561
B.23741
C. 13741
D. 15561
Câu 19:
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa điểm M (1; 3; -2), cắt các tia Ox, Oy, OZ lần lượt tại A, B, C sao cho OA1=OB2=OC4
A. 2x-y-z-1=0
B. x+2y+4z+1=0
C. 4x+2y+z+1=0
D. 4x+2y+z-8=0
Câu 20:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A (-1; -2; 0), B (0; -4; 0), C (0; 0; -3). Phương trình mặt phẳng (P) nào dưới đây đi qua A, gốc tọa độ O và cách đều hai điểm B và C?
A. P:2x-y+3z=0
B. P:6x-3y+5z=0
C. P:2x-y-3z=0
D. P:-6x+3y+4z=0
Câu 21:
Trong không gian với hệ tọa độ Oxyz, cho (P): x - 2y + 2z -5 = 0, A (-3; 0; 1), B (1; -1; 3). Viết phương trình đường thẳng d đi qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.
A. x+31=y-1=z-12
B. x+33=y-2=z-12
C. x-11=y-2=z-12
D. x+32=y-6=z-1-7
Câu 22:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng
Trên đường thẳng d1 lấy hai điểm A, B thỏa mãn AB = 3 . Trên đường thẳng d2 lấy hai điểm C, D thỏa mãn CD = 4. Tính thể tích của tứ diện ABCD.
A. V = 7
B. V = 2√21
C. V=4213
D. V=5216
Câu 23:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, ABC^=60o. Hình chiếu của S trên mặt phẳng (ABC) là điểm H thuộc đoạn BC sao cho BC = 4 BH. Biết SA tạo với đáy một góc 600. Lấy D thuộc tia SB sao cho 2SD = 3SB. Góc giữa hai đường thẳng AD và SC bằng:
A. 600
B. 450
C. 900
D. 300
Câu 24:
Trong không gian Oxyz, cho điểm M (1; 1; 2). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Gọi n→=(1;a;b) là một véc tơ pháp tuyến của (P). Tính S = a3 - 2b
A. S = 0
B. S = - 3
C. S = 6
D. S = -15/8
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com