23 câu Chuyên đề Toán 12 Bài 3: Ứng dụng của tích phân có đáp án
153 người thi tuần này 4.6 2.8 K lượt thi 23 câu hỏi 90 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Hoành độ giao điểm của \(\left( C \right)\) và trục hoành là nghiệm của phương trình:
\(\frac{{ - 3x - 1}}{{x - 1}} = 0 \Leftrightarrow x = - \frac{1}{3}\)
Do đó diện tích hình phẳng là
\(S = \left| {\int\limits_{ - \frac{1}{3}}^0 {\frac{{ - 3x - 1}}{{x - 1}}dx} } \right| = \left| {\int\limits_{ - \frac{1}{3}}^0 {\left( {3 + \frac{4}{{x - 1}}} \right)dx} } \right|\)
\( = \left( {3x + 4\ln \left| {x - 1} \right|} \right)\left| \begin{array}{l}^0\\_{ - \frac{1}{3}}\end{array} \right. = 4\ln \frac{4}{3} - 1\)
Câu 2
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Câu 3
Lời giải
Ta có \(S = \int\limits_{ - 3}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^2 {\left| {f\left( x \right)} \right|dx} = - \int\limits_{ - 3}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = - a + b\)
Chọn D.
Câu 4
Lời giải
Hướng dẫn giải
Ta có \(\ln x = 1 \Leftrightarrow x = e\).
Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = \ln x\), \(y = 1\) và đường thẳng \(x = 1\) là:
\(S = \int\limits_1^e {\left| {\ln x - 1} \right|dx} = \left| {\int\limits_1^e {\left( {\ln x - 1} \right)dx} } \right| = \left| {x\left( {\ln x - 1} \right)\left| \begin{array}{l}^e\\_1\end{array} \right. - \int\limits_1^e {dx} } \right| = \left| {1 - x\left| \begin{array}{l}^e\\_1\end{array} \right.} \right| = e - 2\)
Câu 5
Lời giải
Hướng dẫn giải
Vì \({e^x} > 0\) với mọi \(x \in \mathbb{R}\) nên ta có
\({S_1} = \int\limits_{ - 1}^k {{e^x}dx} = {e^x}\left| \begin{array}{l}^k\\_{ - 1}\end{array} \right. = {e^k} - {e^{ - 1}}\) và \({S_2} = \int\limits_k^1 {{e^x}dx} = {e^x}\left| \begin{array}{l}^1\\_k\end{array} \right. = e - {e^k}\)
\({S_1} = {S_2} \Leftrightarrow {e^k} - {e^{ - 1}} = e - {e^k} \Leftrightarrow 2{e^k} = e + \frac{1}{e} \Leftrightarrow {e^k} = \frac{1}{2}\left( {e + \frac{1}{e}} \right)\)
\( \Leftrightarrow k = \ln \frac{1}{2}\left( {e + \frac{1}{e}} \right) = \ln \left( {e + \frac{1}{e}} \right) - \ln 2\)
Chọn C.
Chú ý: \({a^x} = b \Leftrightarrow x = {\log _a}b\)
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Gọi S là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\), \(y = x\). Tính S.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 23
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.








