Câu hỏi:
04/01/2023 2,099Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \(V = {V_y} = \pi \int\limits_0^{16} {\left( {16 - y} \right)dy} = 128\pi \)
Vì \(D \in \left( P \right)\) nên \(D\left( {a;16 - {a^2}} \right)\). Suy ra \(AD = 16 - {a^2}\).
Do đó khi xoay \(\left( {{H_1}} \right)\) quanh Oy ta được hình trụ tròn có bán kính \(R = a\) và chiều cao \(h = 16 - {a^2}\). Suy ra \({V_1} = \pi {a^2}\left( {16 - {a^2}} \right) = \pi \left( {16{a^2} - {a^4}} \right)\)
Xét hàm số \(f\left( x \right) = \pi \left( {16{a^2} - {a^4}} \right)\) trên \(\left[ {0;4} \right]\) ta thấy: \(f'\left( x \right) = \pi \left( {32x - 4{x^3}} \right)\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\sqrt 2 \\x = - 2\sqrt 2 \end{array} \right.\)
nên \(\mathop {\max }\limits_{\left[ {0;4} \right]} f\left( x \right) = f\left( {2\sqrt 2 } \right) = 64\pi \).
Vậy \(\max \left( {\frac{{{V_1}}}{V}} \right) = \frac{{64\pi }}{{128\pi }} = \frac{1}{2}\) khi \(a = 2\sqrt 2 \).
Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = - 3\), \(x = 2\) (như hình vẽ bên). Đặt \(a = \int\limits_{ - 3}^1 {f\left( x \right)dx} \), \(b = \int\limits_1^2 {f\left( x \right)dx} \).
Mệnh đề nào sau đây là đúng?
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận