Câu hỏi:
04/01/2023 21,712
Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = \ln x\), \(y = 1\) và đường thẳng \(x = 1\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \(\ln x = 1 \Leftrightarrow x = e\).
Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = \ln x\), \(y = 1\) và đường thẳng \(x = 1\) là:
\(S = \int\limits_1^e {\left| {\ln x - 1} \right|dx} = \left| {\int\limits_1^e {\left( {\ln x - 1} \right)dx} } \right| = \left| {x\left( {\ln x - 1} \right)\left| \begin{array}{l}^e\\_1\end{array} \right. - \int\limits_1^e {dx} } \right| = \left| {1 - x\left| \begin{array}{l}^e\\_1\end{array} \right.} \right| = e - 2\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.