Câu hỏi:
04/01/2023 24,839
Hình phẳng \(\left( H \right)\) được giới hạn bởi đồ thị \(\left( C \right)\) của hàm đa thức bậc ba và parabol \(\left( P \right)\) có trục đối xứng vuông góc với trục hoành. Phần tô đậm của hình vẽ có diện tích bằng

Quảng cáo
Trả lời:
Hướng dẫn giải
Vì đồ thị hàm bậc ba và đồ thị hàm bậc hai cắt trục tung tại các điểm có tung độ lần lượt là \(y = 2\) và \(y = 0\) nên ta xét hai hàm số là \(y = a{x^3} + b{x^2} + cx + 2\), \(y = m{x^2} + nx\) (với a, \(m \ne 0\)).
Suy ra \(\left( C \right)\): \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + 2\) và \(\left( P \right)\): \(y = g\left( x \right) = m{x^2} + nx\).
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(\left( P \right)\) là:
\(a{x^3} + b{x^2} + cx + 2 = m{x^2} + nx \Leftrightarrow \left( {a{x^3} + b{x^2} + cx + 2} \right) - \left( {m{x^2} + nx} \right) = 0\).
Đặt \(P\left( x \right) = \left( {a{x^3} + b{x^2} + cx + 2} \right) - \left( {m{x^2} + nx} \right)\).
Theo giả thiết, \(\left( C \right)\) và \(\left( P \right)\) cắt nhau tại các điểm có hoành độ lần lượt là \(x = - 1\), \(x = 1\), \(x = 2\) nên \(P\left( x \right) = a\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\).
Ta có \(P\left( 0 \right) = 2a\).
Mặt khác, ta có \(P\left( 0 \right) = f\left( 0 \right) - g\left( 0 \right) = 2 \Rightarrow a = 1\).
Vậy diện tích phần tô đậm là \(S = \int\limits_{ - 1}^2 {\left| {\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)} \right|dx} = \frac{{37}}{{12}}\)
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.