Câu hỏi:
04/01/2023 30,224
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1\), \(x = 2\) bằng
Quảng cáo
Trả lời:
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Hướng dẫn giải
Vì đồ thị hàm bậc ba và đồ thị hàm bậc hai cắt trục tung tại các điểm có tung độ lần lượt là \(y = 2\) và \(y = 0\) nên ta xét hai hàm số là \(y = a{x^3} + b{x^2} + cx + 2\), \(y = m{x^2} + nx\) (với a, \(m \ne 0\)).
Suy ra \(\left( C \right)\): \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + 2\) và \(\left( P \right)\): \(y = g\left( x \right) = m{x^2} + nx\).
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(\left( P \right)\) là:
\(a{x^3} + b{x^2} + cx + 2 = m{x^2} + nx \Leftrightarrow \left( {a{x^3} + b{x^2} + cx + 2} \right) - \left( {m{x^2} + nx} \right) = 0\).
Đặt \(P\left( x \right) = \left( {a{x^3} + b{x^2} + cx + 2} \right) - \left( {m{x^2} + nx} \right)\).
Theo giả thiết, \(\left( C \right)\) và \(\left( P \right)\) cắt nhau tại các điểm có hoành độ lần lượt là \(x = - 1\), \(x = 1\), \(x = 2\) nên \(P\left( x \right) = a\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\).
Ta có \(P\left( 0 \right) = 2a\).
Mặt khác, ta có \(P\left( 0 \right) = f\left( 0 \right) - g\left( 0 \right) = 2 \Rightarrow a = 1\).
Vậy diện tích phần tô đậm là \(S = \int\limits_{ - 1}^2 {\left| {\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)} \right|dx} = \frac{{37}}{{12}}\)
Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.