Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y = {x^2} + 2\), \(y = 0\), \(x = 1\), \(x = 2\). Gọi V lả thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục Ox. Mệnh đề nào dưới đây đúng?
Quảng cáo
Trả lời:

Thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) được giới hạn bởi các đường \(y = {x^2} + 2\), \(y = 0\), \(x = 1\), \(x = 2\) xung quanh trục Ox là
\(V = \pi \int\limits_1^2 {{{\left( {{x^2} + 2} \right)}^2}dx} \)
Chọn C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Câu 2
Gọi S là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\), \(y = x\). Tính S.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.