Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Từ đồ thị ta thấy
\( - {x^2} + 3 \ge {x^2} - 2x - 1\) \(\forall x \in \left[ { - 1;2} \right]\)
Vậy diện tích phần hình phẳng gạch chéo trong hình vẽ là \(S = \int\limits_{ - 1}^2 {\left[ {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right]dx} \)
\( = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \)
\( = \left( {\frac{{ - 2}}{3}{x^3} + {x^2} + 4x} \right)\left| \begin{array}{l}^2\\_{ - 1}\end{array} \right.\)
\( = \frac{3}{2}\)CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = - 3\), \(x = 2\) (như hình vẽ bên). Đặt \(a = \int\limits_{ - 3}^1 {f\left( x \right)dx} \), \(b = \int\limits_1^2 {f\left( x \right)dx} \).
Mệnh đề nào sau đây là đúng?
Câu 7:
Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm \(y = {x^2}\) và \(y = \frac{{2x}}{{x - 1}}\) là \(S = a + b\ln 2\) với a, b là những số hữu tỷ. Giá trị của \(a + b\) là
về câu hỏi!