Câu hỏi:

04/01/2023 6,651

Cho hình phẳng \(\left( H \right)\) giới hạn bởi hai đồ thị \(\left( {{C_1}} \right)\): \(y = 2{x^2}\) và \(\left( {{C_2}} \right)\): \({y^2} = 4x\). Quay hình phẳng \(\left( H \right)\) xung quanh trục Ox ta thu được khối tròn xoay có thể tích là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Tọa độ giao điểm của \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) là nghiệm của hệ phương trình

\(\left\{ \begin{array}{l}y = 2{x^2}\\{y^2} = 4x\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y = 0\\x = 1;y = 2\end{array} \right.\)

Media VietJack

Với \(x \in \left[ {0;1} \right]\) thì \({y^2} = 4x \Leftrightarrow y = 2\sqrt x \) .

Vậy thể tích của khối tròn xoay cần tính là \(V = \pi \int\limits_0^1 {\left| {{{\left( {2{x^2}} \right)}^2} - {{\left( {2\sqrt x } \right)}^2}} \right|dx} \)

                                                                       \( = \pi \int\limits_0^1 {\left( {4x - 4{x^2}} \right)dx} = \frac{{6\pi }}{5}\)

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)

Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)

Chọn A.

Lời giải

Hướng dẫn giải

Phương trình hoành độ giao điểm của hai đồ thị là

\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)

Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP