Câu hỏi:
04/01/2023 490Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Xét phương trình hoành độ giao điểm của đồ thị các hàm số \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) là
\(x - \pi = \sin x \Leftrightarrow x - \pi - \sin x = 0\) \(\left( 1 \right)\).
Xét hàm số \(h\left( x \right) = x - \pi - \sin x \Rightarrow h'\left( x \right) = 1 - \cos x \ge 0\), \(\forall x \in \mathbb{R}\).
Suy ra \(h\left( x \right)\) đồng biến trên \(\mathbb{R}\) và \(x = \pi \) là một nghiệm của phương trình \(\left( 1 \right)\) nên \(x = \pi \) là nghiệm duy nhất của phương trình \(\left( 1 \right)\).
Do đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục hoành là thể tích của khối nón khỉ quay tam giác vuông OAB quanh trục hoành.
\(V = \frac{1}{3}.\pi .O{B^2}.OA = \frac{1}{3}.\pi .{\pi ^2}.\pi = \frac{1}{3}{\pi ^4} \Rightarrow p = \frac{1}{3}\)
Vậy \(24p = 24.\frac{1}{3} = 8\).
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = - 3\), \(x = 2\) (như hình vẽ bên). Đặt \(a = \int\limits_{ - 3}^1 {f\left( x \right)dx} \), \(b = \int\limits_1^2 {f\left( x \right)dx} \).
Mệnh đề nào sau đây là đúng?
Câu 7:
Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm \(y = {x^2}\) và \(y = \frac{{2x}}{{x - 1}}\) là \(S = a + b\ln 2\) với a, b là những số hữu tỷ. Giá trị của \(a + b\) là
về câu hỏi!