Câu hỏi:
04/01/2023 815
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(\left( {{C_1}} \right)\): \(f\left( x \right) = x - \pi \), \(\left( {{C_2}} \right)\): \(g\left( x \right) = \sin x\) và \(x = 0\). Gọi V là thể tích khối tròn xoay tạo thành do \(\left( H \right)\) quay quanh trục hoành và \(V = p{\pi ^2}\), \(p \in \left( \mathbb{Q} \right)\). Giá trị của 24p bằng

Quảng cáo
Trả lời:
Hướng dẫn giải
Xét phương trình hoành độ giao điểm của đồ thị các hàm số \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) là
\(x - \pi = \sin x \Leftrightarrow x - \pi - \sin x = 0\) \(\left( 1 \right)\).
Xét hàm số \(h\left( x \right) = x - \pi - \sin x \Rightarrow h'\left( x \right) = 1 - \cos x \ge 0\), \(\forall x \in \mathbb{R}\).
Suy ra \(h\left( x \right)\) đồng biến trên \(\mathbb{R}\) và \(x = \pi \) là một nghiệm của phương trình \(\left( 1 \right)\) nên \(x = \pi \) là nghiệm duy nhất của phương trình \(\left( 1 \right)\).
Do đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục hoành là thể tích của khối nón khỉ quay tam giác vuông OAB quanh trục hoành.
\(V = \frac{1}{3}.\pi .O{B^2}.OA = \frac{1}{3}.\pi .{\pi ^2}.\pi = \frac{1}{3}{\pi ^4} \Rightarrow p = \frac{1}{3}\)
Vậy \(24p = 24.\frac{1}{3} = 8\).
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.