Câu hỏi:
04/01/2023 2,298
Cho hàm số \(y = f\left( x \right)\) có đồ thị trên \(\left[ { - 2;6} \right]\) như hình vẽ bên. Biết các miền A, B, \(x = 2\) có diện tích lần lượt là 32; 2; 3.
Tích phân \(\int\limits_{ - 2}^2 {\left[ {f\left( {2x + 2} \right) + 1} \right]dx} \) bằng

Cho hàm số \(y = f\left( x \right)\) có đồ thị trên \(\left[ { - 2;6} \right]\) như hình vẽ bên. Biết các miền A, B, \(x = 2\) có diện tích lần lượt là 32; 2; 3.
Tích phân \(\int\limits_{ - 2}^2 {\left[ {f\left( {2x + 2} \right) + 1} \right]dx} \) bằng
Quảng cáo
Trả lời:
Ta có \(\int\limits_{ - 2}^2 {\left[ {f\left( {2x + 2} \right) + 1} \right]dx} = \int\limits_{ - 2}^2 {f\left( {2x + 2} \right)dx} + 4\)
Xét \({I_1} = \int\limits_{ - 2}^2 {f\left( {2x + 2} \right)dx} \).
Đặt \(t = 2x + 2 \Rightarrow dt = 2dx \Rightarrow dx = \frac{{dt}}{2}\)
Đổi cận: \(x = - 2 \Rightarrow t = - 2\); \(x = 2 \Rightarrow t = 6\).
Suy ra \({I_1} = \frac{1}{2}\int\limits_{ - 2}^6 {f\left( t \right)dt} \).
Gọi \({x_1}\); \({x_2}\) là các hoành độ giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với trực hoành \[\left( { - 2 < {x_1} < {x_2} < 6} \right)\] . Ta có
\[\begin{array}{l}{I_1} = \frac{1}{2}\left( {\int\limits_{ - 2}^{{x_1}} {f\left( t \right)df} + \int\limits_{{x_1}}^{{x_2}} {f\left( t \right)df} + \int\limits_{{x_2}}^6 {f\left( t \right)df} } \right) = \frac{1}{2}\left( {{S_A} - {S_B} + {S_C}} \right)\\ = \frac{1}{2}\left( {32 - 2 + 3} \right) = \frac{{33}}{2}\end{array}\]
Vậy \(\int\limits_{ - 2}^2 {\left[ {f\left( {2x + 2} \right) + 1} \right]dx} = {I_1} + 4 = \frac{{33}}{2} + 4 = \frac{{41}}{2}\)
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.