Câu hỏi:
04/01/2023 3,658Cho hàm số \(y = f\left( x \right)\) có đồ thị của hàm số \(y = f'\left( x \right)\) như hình bên.
Đặt \(g\left( x \right) = 2f\left( x \right) - {\left( {x + 1} \right)^2}\). Mệnh đề nào dưới đây đúng?
Quảng cáo
Trả lời:
Ta có \[g'\left( x \right) = 2f'\left( x \right) - 2\left( {x + 1} \right)\]
\[g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = x + 1\]. Đây là phương trình hoành độ giao điểm của đồ thị hàm số \(f'\left( x \right)\) và đường thẳng d: \(y = x + 1\).
Dựa vào đồ thị ta thấy: \[g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = x + 1 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \pm 3\end{array} \right.\]
Bảng biến thiên:
x |
\( - \infty \) |
|
–3 |
|
1 |
|
3 |
|
\( + \infty \) |
\(g'\left( x \right)\) |
|
– |
0 |
+ |
0 |
– |
0 |
+ |
|
\(g\left( x \right)\) |
\( + \infty \) |
![]()
|
\(g\left( { - 3} \right)\) |
![]() |
\(g\left( 1 \right)\) |
![]() |
\(g\left( 3 \right)\) |
![]() |
\( + \infty \) |
Suy ra \(g\left( { - 3} \right) < g\left( 1 \right)\) và \(g\left( 3 \right) < g\left( 1 \right)\)
Gọi \({S_1}\), \({S_2}\) lần lượt là diện tích các hình phẳng giới hạn bởi đồ thị hàm số \(f'\left( x \right)\), đường thẳng d: \(y = x + 1\) trên các đoạn \(\left[ { - 3;1} \right]\) và \(\left[ {1;3} \right]\) ta có:
+) Trên đoạn \(\left[ { - 3;1} \right]\) ta có \(f'\left( x \right) \ge x + 1\) nên \({S_1} = \int\limits_{ - 3}^1 {\left| {g'\left( x \right)} \right|dx} = \frac{1}{2}\int\limits_{ - 3}^1 {\left[ {f'\left( x \right) - \left( {x + 1} \right)} \right]dx} \).
+) Trên đoạn \(\left[ {1;3} \right]\) ta có \(f'\left( x \right) \le x + 1\) nên \({S_2} = \int\limits_1^3 {\left| {g'\left( x \right)} \right|dx} = \frac{1}{2}\int\limits_1^3 {\left[ {\left( {x + 1} \right)f'\left( x \right)} \right]dx} \).
Dựa vào đồ thị ta thấy \({S_1} > {S_2}\) nên ta có:
\(g\left( x \right)\left| \begin{array}{l}^1\\_{ - 3}\end{array} \right. > - g\left( x \right)\left| \begin{array}{l}^3\\_1\end{array} \right. \Leftrightarrow g\left( 1 \right) - g\left( { - 3} \right) > - g\left( 3 \right) + g\left( 1 \right) \Leftrightarrow g\left( 3 \right) > g\left( { - 3} \right)\).
Vậy \(g\left( 1 \right) > g\left( 3 \right) > g\left( { - 3} \right)\).
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)