Câu hỏi:

04/01/2023 4,109

Cho hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = \frac{{\sqrt {2x - 1} }}{{2x + 1}}\), trục hoành, hai đường thẳng \(x = 1\), \(x = 2\). Thể tích cảu vật thể tròn xoay tạo thành khi cho hình \(\left( H \right)\) quay xung quanh trục Ox bằng \(V = \pi \left( {\ln \frac{{\sqrt a }}{3} + b} \right)\), trong đó a, b là các số hữu tỷ. Khi đó tích a.b bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hướng dẫn giải

Thể tích của vật thể tròn xoay tạo thành khi hình phẳng \(\left( H \right)\) quay xung quanh trục Ox

\(V = \pi \int\limits_1^2 {{{\left( {\frac{{\sqrt {2x - 1} }}{{2x + 1}}} \right)}^2}dx} = \pi \int\limits_1^2 {\frac{{2x - 1}}{{{{\left( {2x + 1} \right)}^2}}}dx} = \pi \int\limits_1^2 {\left[ {\frac{1}{{2x + 1}} - \frac{2}{{{{\left( {2x + 1} \right)}^2}}}} \right]dx} \)

    \( = \pi \left( {\frac{1}{2}\ln \left( {2x + 1} \right) + \frac{1}{{2x + 1}}} \right)\left| \begin{array}{l}^2\\_1\end{array} \right. = \pi \left( {\frac{1}{2}\ln \frac{5}{3} - \frac{2}{{15}}} \right) = \pi \left( {\ln \frac{{\sqrt {15} }}{3} - \frac{2}{{15}}} \right)\)

Suy ra \(a = 15\), \(b = - \frac{2}{{15}}\)

Vậy \(a.b = - 2\).

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)

Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)

Chọn A.

Lời giải

Hướng dẫn giải

Phương trình hoành độ giao điểm của hai đồ thị là

\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)

Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP