Câu hỏi:
04/01/2023 5,284
Để chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn An đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên. Biết rằng \(OO' = 5\,cm\), \(OA = 10\,cm\), \(OB = 20\,cm\), đường cong AB là một phần của parabol có đỉnh là điểm A. Thể tích của chiếc mũ bằng

Để chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn An đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên. Biết rằng \(OO' = 5\,cm\), \(OA = 10\,cm\), \(OB = 20\,cm\), đường cong AB là một phần của parabol có đỉnh là điểm A. Thể tích của chiếc mũ bằng
Quảng cáo
Trả lời:
Ta gọi:
+) Thể tích của chiếc mũ là V.
+) Thể tích của khối trụ có bán kính đáy bằng \(OA = 10\,cm\)cm và đường cao \(OO' = 5\,cm\)là \({V_1}\).
+) Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong AB và hai trục tọa độ quanh trục Oy là \({V_2}\).
Khi đó \({V_1} = {5.10^2}\pi = 500\pi \) và \(V = {V_1} + {V_2}\).
Chọn hệ trục tọa độ như hình vẽ.
Do parabol có đỉnh A nên nó có phương trình dạng \(\left( P \right)\): \(y = a{\left( {x - 10} \right)^2}\).
Vì \(\left( P \right)\) qua điểm \(B\left( {0;20} \right)\) nên \(a = \frac{1}{5}\).
Do đó \(\left( P \right)\): \(y = \frac{1}{5}{\left( {x - 10} \right)^2}\). Từ đó suy ra \(x = 10 - \sqrt {5y} \)(do \(x < 10\) ).
Suy ra \({V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } \right)}^2}dy} = \pi \left( {3000 - \frac{{8000}}{3}} \right) = \frac{{1000}}{3}\pi \left( {c{m^3}} \right)\).
Vậy \(V = {V_1} + {V_2} = \frac{{1000}}{3}\pi + 500\pi = \frac{{2500}}{3}\pi \left( {c{m^3}} \right)\)
Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx = } \int\limits_1^2 {\left| {{x^2} - 4x + 3} \right|dx} \)
Vì phương trình \({x^2} - 4x + 3\) không có nghiệm trên \(\left( {1;2} \right)\) nên \(S = \left| {\int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx} } \right| = \frac{2}{3}\)
Chọn A.
Lời giải
Phương trình hoành độ giao điểm của hai đồ thị là
\({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = 0\end{array} \right.\)
Vậy \(S = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right| = 4 + 4 = 8\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.