Trong không gian với hệ trục Oxyz, cho hai điểm M (1; 2; 1); N (-1; 0; -1). Có bao nhiêu mặt phẳng (P) qua M, N cắt trục Ox, trục Oy lần lượt tại A, B (A ≠ B) sao cho AM = √3BN
Quảng cáo
Trả lời:

Chọn B
Gọi là vectơ pháp tuyến của (P) thỏa yêu cầu bài toán.
(P) qua N (-1; 0; -1) nên phương trình mặt phẳng có dạng:
A(x+1) + By + C(z+1) = 0 <=> Ax + By + Cz + A + C = 0
• (P) qua M (1;2;1) suy ra
A + 2B + C + A + C = 0 <=> A + B + C = 0 => A + C = - B (1)
• (P) cắt trục Ox tại A(a; 0; 0) suy ra A.a + A + C = 0 => A.a - B = 0 => a = B/A
(Do nếu A = 0 => B = 0 => C = 0 nên A ≠ 0). Suy ra A(B/A; 0; 0)
• (P) cắt trục Oy tại B (0; b; 0) suy ra B.b + A + C = 0 => B.b - B = 0 => B = 0 hoặc b = 1
TH1: B = 0 => A + C = 0. Chọn C = 1 => A = -1
Phương trình mặt phẳng (P) có dạng: x - z = 0 => A ≡ B ≡ O (0;0;0) => không thỏa yêu cầu.
TH2: b = 1 => B (0;1;0), ; BN =
· B/A = -1 => B = -A => C = 0. Chọn A = 1 => B = -1
Phương trình mp (P): x - y + 1 = 0
· B/A = 3 => B = 3A => C = -4A. Chọn A = 1 => B = 3 => C = -4.
Phương trình mp (P): x + 3y - 4z - 3 = 0
Vậy có hai mặt phẳng thỏa yêu cầu.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Gọi M (x; y; z)
Như vậy, điểm M thuộc mặt cầu (S) tâm I(-6;6;-6) và bán kính R = √108 = 6√3. Do đó OM lớn nhất bằng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.