Câu hỏi:

12/07/2024 3,488

Cho đường tròn (O; 2cm) và một điểm A chạy trên đường tròn đó. Từ A vẽ tiếp tuyến xy. Trên tia Ax lấy điểm M sao cho \[{\rm{A}}M = 2\sqrt 3 \]cm. Hỏi điểm M di động trên đường nào khi A chạy trên (O).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

+) Phần thuận: Với điểm M và A thỏa mãn đề bài

Có tam giác AMO vuông tại A

Suy ra \[OM = \sqrt {A{M^2} + A{O^2}} = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + {2^2}} = 4\] cm.

Suy ra M thuộc đường tròn (O; 4 cm)

+) Phần đảo: Lấy điểm A bất kì trên (O; 2 cm). Từ A vẽ tuyến tuyến xy cắt (O; 4 cm) tại M. Chứng minh \[{\rm{A}}M = 2\sqrt 3 \].

Thật vậy, OA AM nên tam giác OAM vuông tại A

Suy ra \[{\rm{AM = }}\sqrt {O{M^2} - O{A^2}} = \sqrt {{4^2} - {2^2}} = 2\sqrt 3 \]

Vậy quỹ tích điểm M là đường tròn (O; 4 cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Tìm giao điểm Q của SD và (MNP).

Xem đáp án » 12/07/2024 20,681

Câu 2:

Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a) Chứng minh tam giác COD vuông tại O.

b) Chứng minh AC . BD = R2.

c) Kẻ MH vuông góc AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

Xem đáp án » 12/07/2024 16,688

Câu 3:

Cho hình bình hành ABCD tâm O. Gọi M là 1 điểm bất kỳ. Chứng minh

a) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {M{\rm{D}}} = 4\overrightarrow {MO} \)

b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} = 2\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 8,736

Câu 4:

Cho hàm số y = 2x + 3.

a) Vẽ đồ thị hàm số trên.

b) Gọi A, B là giao điểm của đồ thị với các trục tọa độ. Tính diện tích tam giác OAB (O là gốc tọa độ và đơn vị trên các trục tọa độ là cm).

c) Tính góc tạo bởi đường thẳng y = ax + b và trục Ox.

Xem đáp án » 12/07/2024 6,753

Câu 5:

Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.

a) Tứ giác OCAB là hình gì? Vì sao?

b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R.

Xem đáp án » 12/07/2024 6,353

Câu 6:

Cho tam giác ABC có \(\widehat {ABC} = 30^\circ \), AB = 5, BC = 8. Tính \(\overrightarrow {BA} .\overrightarrow {BC} \).

Xem đáp án » 12/07/2024 6,080

Câu 7:

Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ  AH vuông góc với BC. Từ H vẽ HM vuông góc với AB và HN vuông góc với AC (H BC, M AB, N AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt đường tròn (O; R) tại K

a) Chứng minh tứ giác AMHN nội tiếp.

b) Chứng minh AE vuông góc với MN.

c) Chứng minh AH = AK.

Xem đáp án » 12/07/2024 5,368

Bình luận


Bình luận