Câu hỏi:
12/07/2024 237Cho biểu thức \(P = \left( {1 - \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\left( {\frac{{\sqrt x + 2}}{{\sqrt x + 3}} + \frac{{\sqrt x - 3}}{{2 - \sqrt x }} + \frac{{\sqrt x - 2}}{{x + \sqrt x - 6}}} \right)\).
a) Rút gọn P.
b) Tính giá trị của P biết \(x = \frac{{3 - \sqrt 5 }}{2}\).
c) Tìm các giá trị x nguyên để P nhận giá trị nguyên.
d) Tìm x để P < 1.
e) Tìm các giá trị của x để \(P = \sqrt x - 3\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Điều kiện: x ≥ 0, x ≠ 4.
Ta có \(P = \left( {1 - \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\left( {\frac{{\sqrt x + 2}}{{\sqrt x + 3}} + \frac{{\sqrt x - 3}}{{2 - \sqrt x }} + \frac{{\sqrt x - 2}}{{x + \sqrt x - 6}}} \right)\)
b) Ta có \(x = \frac{{3 - \sqrt 5 }}{2} = \frac{{6 - 2\sqrt 5 }}{4} = {\left( {\frac{{\sqrt 5 - 1}}{2}} \right)^2}\) (thỏa mãn điều kiện)
Suy ra \(\sqrt x = \left| {\frac{{\sqrt 5 - 1}}{2}} \right| = \frac{{\sqrt 5 - 1}}{2}\)
c) Với x ≥ 0, x ≠ 4 ta có
Để P nguyên thì \(\frac{3}{{\sqrt x + 1}}\) nguyên
\( \Leftrightarrow \sqrt x + 1 \in U\left( 3 \right) = \left\{ {1;3; - 1; - 3} \right\}\)
\( \Leftrightarrow \sqrt x \in \left\{ {0;2; - 2; - 4} \right\}\)
\( \Leftrightarrow x \in \left\{ {0;4} \right\}\)
Kết hợp điều kiện x ≥ 0, x ≠ 4 ta có: x = 0.
Vậy x = 0.
d) Để P < 1 ⇔ \(\frac{{\sqrt x - 2}}{{\sqrt x + 1}} < 1\)
\( \Leftrightarrow \frac{{\sqrt x - 2}}{{\sqrt x + 1}} - 1 < 0\)
\( \Leftrightarrow \frac{{\sqrt x - 2 - \sqrt x - 1}}{{\sqrt x + 1}} < 0\)
\( \Leftrightarrow \frac{{ - 3}}{{\sqrt x + 1}} < 0\)
\( \Leftrightarrow \sqrt x + 1 > 0\) (luôn đúng)
Vậy P < 1 với mọi x ≥ 0, x ≠ 4.
e) Để \(P = \sqrt x - 3\) \( \Leftrightarrow \frac{{\sqrt x - 2}}{{\sqrt x + 1}} = \sqrt x - 3\)
\( \Leftrightarrow \left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right) = \sqrt x - 2\)
\( \Leftrightarrow x - 2\sqrt x - 3 = \sqrt x - 2\)
\( \Leftrightarrow x - 3\sqrt x - 1 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sqrt x = \frac{{3 + \sqrt {13} }}{2}\\\sqrt x = \frac{{3 - \sqrt {13} }}{2}\end{array} \right.\)
\( \Leftrightarrow \sqrt x = \frac{{3 + \sqrt {13} }}{2}\) (vì \(\sqrt x > 0\))
\( \Leftrightarrow x = {\left( {\frac{{3 + \sqrt {13} }}{2}} \right)^2} = \frac{{11 + 3\sqrt {13} }}{2}\) (thỏa mãn)
Vậy \(x = \frac{{11 + 3\sqrt {13} }}{2}\) thì \(P = \sqrt x - 3\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC . BD = R2.
c) Kẻ MH vuông góc AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Câu 3:
Cho hình bình hành ABCD tâm O. Gọi M là 1 điểm bất kỳ. Chứng minh
a) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {M{\rm{D}}} = 4\overrightarrow {MO} \)
b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} = 2\overrightarrow {AC} \).
Câu 4:
Cho hàm số y = 2x + 3.
a) Vẽ đồ thị hàm số trên.
b) Gọi A, B là giao điểm của đồ thị với các trục tọa độ. Tính diện tích tam giác OAB (O là gốc tọa độ và đơn vị trên các trục tọa độ là cm).
c) Tính góc tạo bởi đường thẳng y = ax + b và trục Ox.
Câu 5:
Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.
a) Tứ giác OCAB là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R.
Câu 6:
Câu 7:
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ AH vuông góc với BC. Từ H vẽ HM vuông góc với AB và HN vuông góc với AC (H ∈ BC, M ∈ AB, N ∈ AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt đường tròn (O; R) tại K
a) Chứng minh tứ giác AMHN nội tiếp.
b) Chứng minh AE vuông góc với MN.
c) Chứng minh AH = AK.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!