🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Ta có:

Cho 4 điểm A, B, C, D bất kì. Chứng minh vecto AB + vecto CD = vecto AD  (ảnh 1)

Vậy \(\overrightarrow {AB} + \overrightarrow {C{\rm{D}}} = \overrightarrow {A{\rm{D}}} + \overrightarrow {CB} \).

Lời giải

Đáp án đúng là: A

Ta có

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)(x + 4)^3 , với mọi x thuộc R (ảnh 1)

Ta có bảng xét dấu của f’(x)

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)(x + 4)^3 , với mọi x thuộc R (ảnh 2)

Dựa vào bảng xét dấu của f'(x) suy ra hàm số đã cho có 2 điểm cực tiểu.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là C

Ta có:

f’(x) = 0 x(x − 1)2 = 0 \(\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Ta xét dấu của f’ (x)

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)^2 , với mọi x thuộc R. Số điểm cực tiểu  (ảnh 1)

Ta thấy đạo hàm đổi dấu đúng 1 lần nên hàm số đã cho có đúng 1 cực trị

Vậy ta chọn đáp án C.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SD (ảnh 1)

Gọi H là trung điểm của AB

Suy ra SH (ACBD)

Do đó SH HD

Hay tam giác SHD vuông tại H

Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} \)

Vì tam giác AHD vuông tại A

Nên \(D{H^2} = A{H^2} + A{{\rm{D}}^2} = \frac{{{a^2}}}{4} + {a^2} = \frac{5}{4}{a^2}\)

Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} = \sqrt {\frac{9}{4}{a^2} - \frac{5}{4}{a^2}} = \sqrt {{a^2}} = a\)

Ta có \({V_{S.ABC{\rm{D}}}} = \frac{1}{3}.SH.{S_{ABC{\rm{D}}}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)

Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H trên SK

Ta có

\(\left\{ \begin{array}{l}B{\rm{D}} \bot HK\\B{\rm{D}} \bot SH\end{array} \right. \Rightarrow BH \bot (SHK)\)

Suy ra BD HE

Mà SK HE nên HE (SBD)

Ta có: HK = HB . sin \(\widehat {KBH}\) = \(\frac{a}{2}.\sin 45^\circ = \frac{a}{2}.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\)

Suy ra \(HE = \frac{{HS.HK}}{{\sqrt {H{{\rm{S}}^2} + H{K^2}} }} = \frac{{a.\frac{{a\sqrt 2 }}{4}}}{{\sqrt {{a^2} + \frac{{2{{\rm{a}}^2}}}{{16}}} }} = \frac{{{a^2}\sqrt 2 }}{{4\sqrt {\frac{9}{8}{a^2}} }} = \frac{a}{3}\)

Do đó d(A,(SBD) = 2 d(H,(SBD)) = 2 HE = \(\frac{{2{\rm{a}}}}{3}\)

Lời giải

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của (ảnh 1)

a) Vì ABCD là hình vuông nên AB = BC = CD = DA và

\(\widehat {ABC} = \widehat {BC{\rm{D}}} = \widehat {C{\rm{D}}A} = \widehat {DAB} = 90^\circ \)

Xét DEC và BFC có

EC = FC (giả thiết)

\(\widehat {DCE} = \widehat {BCF} = 90^\circ \)

DC = BC (chứng minh trên)

Do đó DEC = BFC (c.g.c)

Suy ra DE = BF (2 cạnh tương ứng), \(\widehat {E{\rm{D}}C} = \widehat {FBC}\)

b) Xét BEH và DEC có

\(\widehat {BEH} = \widehat {DEC}\) (hai góc đối đỉnh)

\(\widehat {E{\rm{D}}C} = \widehat {FBC}\) (chứng minh câu a)

Suy ra  (g.g)

Do đó \(\widehat {BHE} = \overrightarrow {DCE} \)

\(\overrightarrow {DCE} = 90^\circ \) nên \(\widehat {BHE} = 90^\circ \)

Hay DE BF

Suy ra \(\widehat {DHF} = 90^\circ \)

c) Xét tam giác BDF có

DE  BF

BC  DF

DE cắt BC tại E

Suy ra E là trực tâm tam giác BDF

Do đó FK BD

Mà AO BD

Suy ra AO // IK

Vì CE = CF nên tam giác CEF cân tại C

Mà CI là trung tuyến

Suy ra CI là đường cao

Hay CI EF

Xét tứ giác OKIC có

\(\widehat {OKI} = \widehat {K{\rm{O}}C} = \widehat {CIK} = 90^\circ \)

Suy ra OKIC là hình chữ nhật

Do đó OC = KI

Mà OC = AO

Suy ra AO = KI

Xét tứ giác AOIK có AO // KI , AO = KI (chứng minh trên)

Suy ra AOIK là hình bình hành

d) Xét tứ giác ABHD có \(\widehat {BA{\rm{D}}} + \widehat {BHD} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác ABHD nội tiếp

Do đó \(\widehat {AHB} = \widehat {A{\rm{D}}B} = 45^\circ \)

Xét tứ giác DKHF có \(\widehat {{\rm{DKF}}} = \widehat {DHF} = 90^\circ \)

Suy ra tứ giác DKHF nội tiếp

Do đó \(\widehat {KHB} = \widehat {{\rm{FD}}B} = 45^\circ \)

Suy ra \(\widehat {AHB} = \overrightarrow {KHB} \)

Suy ra AH ≡ KH

Do đó A, H, K thẳng hàng

Vậy A, H, K thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 13

Cho tam giác ABC. Tìm tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 30

Hàm số y = \(\frac{{{x^2} - 2{\rm{x}}}}{{x - 1}}\) đồng biến trên khoảng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 37

Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. H, H' lần lượt là trực tâm của tam giá ABC, MNP. Điểm K đối xứng H qua H'. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 39

Hàm số nào trong các hàm sau đây không phải là hàm số bậc hai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

11967 Đánh giá

50%

40%

0%

0%

0%